Bild 1 von 1

Galerie
Bild 1 von 1

Ähnlichen Artikel verkaufen?
Biometric Authentication : A Machine Learning Approach Hardcover
US $14,99
Ca.CHF 12,07
oder Preisvorschlag
Artikelzustand:
“The book is in like-new condition. I see no obvious flaws with it”
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
US $4,99 (ca. CHF 4,02) Economy Shipping.
Standort: Carbondale, Illinois, USA
Lieferung:
Lieferung zwischen Do, 13. Nov und Mo, 17. Nov nach 94104 bei heutigem Zahlungseingang
Rücknahme:
Keine Rücknahme.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:116075909042
Artikelmerkmale
- Artikelzustand
- Neuwertig
- Hinweise des Verkäufers
- “The book is in like-new condition. I see no obvious flaws with it”
- Subject Area
- Mechanical Engineering
- Book Title
- Biometric Authentication : A Machine Learning Approach Hardcover
- Educational Level
- Adult & Further Education, High School
- Level
- Intermediate, Advanced, Business
- Subject
- Design, Technology
- ISBN
- 9780131478244
Über dieses Produkt
Product Identifiers
Publisher
Prentice Hall PTR
ISBN-10
0131478249
ISBN-13
9780131478244
eBay Product ID (ePID)
30767666
Product Key Features
Number of Pages
496 Pages
Publication Name
Biometric Authentication : a Machine Learning Approach
Language
English
Subject
General, Computer Vision & Pattern Recognition
Publication Year
2004
Type
Textbook
Subject Area
Law, Computers
Series
Prentice Hall Information and System Sciences Ser.
Format
Hardcover
Dimensions
Item Height
1.5 in
Item Weight
39.4 Oz
Item Length
9.3 in
Item Width
6.9 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2004-012612
Dewey Edition
22
Illustrated
Yes
Dewey Decimal
621.389/28
Table Of Content
Machine learning: driving significant improvements in biometric performance As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems. Coverage includes: How machine learning approaches differ from conventional template matching Theoretical pillars of machine learning for complex pattern recognition and classification Expectation-maximization (EM) algorithms, Fisher's Linear Discriminant Analysis (LDA), and support vector machines (SVM) Multi-layer learning models and back-propagation (BP) algorithms Probabilistic decision-based neural networks (PDNNs) for face biometrics Flexible structural frameworks for incorporating machine learning subsystems in biometric applications Hierarchical mixture of experts and inter-class learning strategies based on class-based modular networks Multi-cue data fusion techniques that integrate face and voice recognition Application case studies The biometrics industry is expected to grow by 600% in the next four years. Machine learning will help that drive that growth. Whether you're an engineer, scientist, developer, or integrator, this book will help you make the most of it.
Synopsis
Machine learning: driving significant improvements in biometric performance As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems. Coverage includes: How machine learning approaches differ from conventional template matching Theoretical pillars of machine learning for complex pattern recognition and classification Expectation-maximization (EM) algorithms..., A breakthrough approach to improving biometrics performance Constructing robust information processing systems for face and voice recognition Supporting high-performance data fusion in multimodal systems Algorithms, implementation techniques, and application examples Machine learning: driving significant improvements in biometric performance As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems. Coverage includes: How machine learning approaches differ from conventional template matching Theoretical pillars of machine learning for complex pattern recognition and classification Expectation-maximization (EM) algorithms and support vector machines (SVM) Multi-layer learning models and back-propagation (BP) algorithms Probabilistic decision-based neural networks (PDNNs) for face biometrics Flexible structural frameworks for incorporating machine learning subsystems in biometric applications Hierarchical mixture of experts and inter-class learning strategies based on class-based modular networks Multi-cue data fusion techniques that integrate face and voice recognition Application case studies
LC Classification Number
TK7882.P3K84 2004
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
An Easy Choice
100% positive Bewertungen•455 Artikel verkauft
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Verkäuferbewertungen (124)
- o***o (264)- Bewertung vom Käufer.Letztes JahrBestätigter KaufA+ seller. Item as described, prompt shipping.1st Print - Compact City: A Plan for a Liveable Urban Environment - Dantzig 1974 (Nr. 115854633591)
- *****- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufAs described well packaged
- -***d (359)- Bewertung vom Käufer.Letzter MonatBestätigter KaufGreat seller! Many Thanks!
Noch mehr entdecken:
- Robert-A. - Heinlein-Belletristik-Bücher,
- James-A. - Michener-Belletristik-Bücher,
- Michael-A. - Singer-Sachbuch Bücher,
- Deutsche Bücher Robert-A. - Heinlein-Belletristik,
- Robert-A. - Heinlein-Taschenbuch-Belletristik-Bücher,
- Michael-A. - Singer-Taschenbuch-Sachbuch Bücher,
- Michael-A. - Singer-Taschenbuch-Lebensführung-, - Motivation- & - Karriere-Sachbuch Bücher über Selbsthilfe,
- Michael-A. - Singer-Lebensführung-, - Motivation- & - Karriere-Sachbuch Deutsche Bücher über Selbsthilfe,
- Michael-A. - Singer-Taschenbuch-Lebensführung-, - Motivation- & - Karriere-Sachbuch Deutsche Bücher über Selbsthilfe

