Bild 1 von 6






Galerie
Bild 1 von 6






Einführung Diskrete Mathematik Taschenbuch V. K. Balakrishnan Taschenbuch Dover
US $9,89
Ca.CHF 8,09
Bisher US $10,99 (- 10%)
Artikelzustand:
Sehr gut
Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand befindet. Der Einband weist keine offensichtlichen Beschädigungen auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
US $8,24 (ca. CHF 6,74) USPS Ground Advantage®.
Standort: Milwaukee, Wisconsin, USA
Lieferung:
Lieferung zwischen Do, 26. Jun und Mi, 2. Jul nach 94104 bei heutigem Zahlungseingang
Rücknahme:
14 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:156861962777
Artikelmerkmale
- Artikelzustand
- ISBN
- 9780486691152
Über dieses Produkt
Product Identifiers
Publisher
Dover Publications, Incorporated
ISBN-10
0486691152
ISBN-13
9780486691152
eBay Product ID (ePID)
961798
Product Key Features
Number of Pages
256 Pages
Publication Name
Introductory Discrete Mathematics
Language
English
Subject
Programming / Algorithms, Reference, Computer Science, Discrete Mathematics
Publication Year
2010
Type
Textbook
Subject Area
Mathematics, Computers
Series
Dover Books on Computer Science Ser.
Format
Trade Paperback
Dimensions
Item Height
0.5 in
Item Weight
13.2 Oz
Item Length
9.2 in
Item Width
6.5 in
Additional Product Features
Intended Audience
College Audience
LCCN
95-052384
Dewey Edition
20
Illustrated
Yes
Dewey Decimal
511
Edition Description
Reprint,New Edition
Table Of Content
Preface 0 Set Theory and Logic 0.1 Introduction to Set Theory 0.2 Functions and Relations 0.3 Inductive Proofs and Recursive Definitions 0.4 The Language of Logic 0.5 Notes and References 0.6 Exercises 1 Combinatorics 1.1 Two Basic Counting Rules 1.2 Permutations 1.3 Combinations 1.4 More on Permutations and Combinations 1.5 The Pigeonhole Principle 1.6 The Inclusion-Exclusion Principle 1.7 Summary of Results in Combinatorics 1.8 Notes and References 1.9 Exercises 2 Generating Functions 2.1 Introduction 2.2 Ordinary Generating Functions 2.3 Exponential Generating Functions 2.4 Notes and References 2.5 Exercises 3 Recurrence Relations 3.1 Introduction 3.2 Homogeneous Recurrence Relations 3.3 Inhomogeneous Recurrence Relations 3.4 Recurrence Relations and Generating Functions 3.5 Analysis of Alogorithms 3.6 Notes and References 3.7 Exercises 4 Graphs and Digraphs 4.1 Introduction 4.2 Adjacency Matrices and Incidence Matrices 4.3 Joining in Graphs 4.4 Reaching in Digraphs 4.5 Testing Connectedness 4.6 Strong Orientation of Graphs 4.7 Notes and References 4.8 Exercises 5 More on Graphs and Digraphs 5.1 Eulerian Paths and Eulerian Circuits 5.2 Coding and de Bruijn Digraphs 5.3 Hamiltonian Paths and Hamiltonian Cycles 5.4 Applications of Hamiltonian Cycles 5.5 Vertex Coloring and Planarity of Graphs 5.6 Notes and References 5.7 Exercises 6 Trees and Their Applications 6.1 Definitions and Properties 6.2 Spanning Trees 6.3 Binary Trees 6.4 Notes and References 6.5 Exercises 7 Spanning Tree Problems 7.1 More on Spanning Trees 7.2 Kruskal's Greedy Algorithm 7.3 Prim's Greedy Algorithm 7.4 Comparison of the Two Algorithms 7.5 Notes and References 7.6 Exercises 8 Shortest Path Problems 8.1 Introduction 8.2 Dijkstra's Algorithm 8.3 Floyd-Warshall Algorithm 8.4 Comparison of the Two Algorithms 8.5 Notes and References 8.6 Exercises Appendix What is NP-Completeness? A.1 Problems and Their Instances A.2 The Size of an Instance A.3 Algorithm to Solve a Problem A.4 Complexity of an Algorithm A.5 "The "Big Oh" or the O(·) Notation" A.6 Easy Problems and Difficult Problems A.7 The Class P and the Class NP A.8 Polynomial Transformations and NP-Completeness A.9 Coping with Hard Problems Bibliography Answers to Selected Exercises Index
Synopsis
Concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms to solve these problems. Applications are emphasized and more than 200 exercises help students test their grasp of the material. Appendix. Bibliography. Answers to Selected Exercises., This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition., This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition., This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems. Chapters 03 cover fundamental operations involving sets and the principle of mathematical induction, and standard combinatorial topics: basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating functions, recurrence relations, and an introduction to the analysis of algorithms. Applications are emphasized wherever possible and more than 200 exercises at the ends of these chapters help students test their grasp of the material. Chapters 4 and 5 survey graphs and digraphs, including their connectedness properties, applications of graph coloring, and more, with stress on applications to coding and other related problems. Two important problems in network optimization the minimal spanning tree problem and the shortest distance problem are covered in the last two chapters. A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the appendix., This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems. Chapters 0-3 cover fundamental operations involving sets and the principle of mathematical induction, and standard combinatorial topics: basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating functions, recurrence relations, and an introduction to the analysis of algorithms. Applications are emphasized wherever possible and more than 200 exercises at the ends of these chapters help students test their grasp of the material. Chapters 4 and 5 survey graphs and digraphs, including their connectedness properties, applications of graph coloring, and more, with stress on applications to coding and other related problems. Two important problems in network optimization the minimal spanning tree problem and the shortest distance problem are covered in the last two chapters. A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the appendix.
LC Classification Number
QA39.2.B35
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
FLOMENGCO
100% positive Bewertungen•514 Artikel verkauft
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Verkäuferbewertungen (154)
- e***c (627)- Bewertung vom Käufer.Letzter MonatBestätigter KaufSeveral other sellers with this fabric but I selected this one bc of the fast shipping reviews. I did not receive that. I waited 2 days and contacted the seller asking when it was going to be shipped. With a quick response they answered it would be tomorrow. I was hoping the turn around service of 1 day as advertised.
- i***t (1374)- Bewertung vom Käufer.Letzter MonatBestätigter KaufGreat sale!!!
- _***4 (78)- Bewertung vom Käufer.Letzter MonatBestätigter KaufFast shipper. Great deal. Nicely packaged. Thanks a ton!
Noch mehr entdecken:
- Belletristik-Bücher Philip K. Dicke,
- Fantasy Bücher Belletristik Philip K. Dicke,
- Ursula-K. - Le-Guin-Belletristik-Bücher,
- Ursula-K. - Le-Guin-Taschenbuch-Belletristik - Bücher,
- Hörbücher und Hörspiele Philip K. Dicke,
- Bücher über Literatur Philip K. Dicke Belletristik,
- Belletristik-Bücher im Taschenbuch-Format Philip K. Dicke,
- Science-Fiction-Belletristik Philip K. Dicke Bücher,
- Belletristik im Taschenbuch Philip K. Dicke Fantasy Bücher auf Englisch,
- Als gebundene Ausgabe mit Philip K. Dicke Belletristik Science-Fiction-Bücher