|Eingestellt in Kategorie:
Dieses Angebot wurde verkauft am Mo, 28. Jul um 05:05.
Komplexe Analyse (Princeton Lectures in Analysis, Nr. 2), Stein, Elias M.,Shakar
Verkauft
Komplexe Analyse (Princeton Lectures in Analysis, Nr. 2), Stein, Elias M.,Shakar
US $41,18US $41,18
Di, 29. Jul, 05:05Di, 29. Jul, 05:05
Ähnlichen Artikel verkaufen?

Komplexe Analyse (Princeton Lectures in Analysis, Nr. 2), Stein, Elias M.,Shakar

CH Media Store
(6710)
Angemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $41,18
Ca.CHF 32,75
oder Preisvorschlag
Bisher US $45,76 (- 10%)Was bedeutet dieser Preis?
Aktueller Verkaufspreis (Angabe des Verkäufers)
Artikelzustand:
Akzeptabel
No dust cover. Name on inside cover. Unread book. Ships fast with tracking.
Beendet: 29. Jul. 2025 05:05:30 MESZ
    Versand:
    US $3,99 (ca. CHF 3,17) Standard Shipping.
    Standort: Woodbridge, Virginia, USA
    Lieferung:
    Lieferung zwischen Do, 31. Jul und Di, 5. Aug nach 94104 bei heutigem Zahlungseingang
    Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
    Rücknahme:
    30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
    Zahlungen:
         Diners Club

    Sicher einkaufen

    eBay-Käuferschutz
    Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
    Der Verkäufer ist für dieses Angebot verantwortlich.
    eBay-Artikelnr.:157159689626
    Zuletzt aktualisiert am 10. Jul. 2025 15:43:15 MESZAlle Änderungen ansehenAlle Änderungen ansehen

    Artikelmerkmale

    Artikelzustand
    Akzeptabel
    Buch mit deutlichen Gebrauchsspuren. Der Einband kann einige Beschädigungen aufweisen, ist aber in seiner Gesamtheit noch intakt. Die Bindung ist möglicherweise leicht beschädigt, in ihrer Gesamtheit aber noch intakt. In den Randbereichen wurden evtl. Notizen gemacht, der Text kann Unterstreichungen und Markierungen enthalten, es fehlen aber keine Seiten und es ist alles vorhanden, was für die Lesbarkeit oder das Verständnis des Textes notwendig ist. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers. Alle Zustandsdefinitionen ansehenwird in neuem Fenster oder Tab geöffnet
    Hinweise des Verkäufers
    “No dust cover. Name on inside cover. Unread book. Ships fast with tracking.”
    Book Title
    Complex Analysis
    ISBN
    9780691113852

    Über dieses Produkt

    Product Identifiers

    Publisher
    Princeton University Press
    ISBN-10
    0691113858
    ISBN-13
    9780691113852
    eBay Product ID (ePID)
    2492550

    Product Key Features

    Number of Pages
    400 Pages
    Language
    English
    Publication Name
    Complex Analysis
    Subject
    Complex Analysis, Mathematical Analysis
    Publication Year
    2003
    Type
    Textbook
    Author
    Rami Shakarchi, Elias M. Stein
    Subject Area
    Mathematics
    Format
    Hardcover

    Dimensions

    Item Height
    1.2 in
    Item Weight
    25 Oz
    Item Length
    9.5 in
    Item Width
    6.5 in

    Additional Product Features

    Intended Audience
    College Audience
    LCCN
    2005-274996
    Dewey Edition
    22
    Illustrated
    Yes
    Dewey Decimal
    515
    Table Of Content
    Foreword vii Introduction xv Chapter 1. Preliminaries to Complex Analysis 1 1 Complex numbers and the complex plane 1 1.1 Basic properties 1 1.2 Convergence 5 1.3 Sets in the complex plane 5 2 Functions on the complex plane 8 2.1 Continuous functions 8 2.2 Holomorphic functions 8 2.3 Power series 14 3 Integration along curves 18 4 Exercises 24 Chapter 2. Cauchy's Theorem and Its Applications 32 1 Goursat's theorem 34 2 Local existence of primitives and Cauchy's theorem in a disc 37 3 Evaluation of some integrals 41 4 Cauchy's integral formulas 45 5 Further applications 53 5.1 Morera's theorem 53 5.2 Sequences of holomorphic functions 53 5.3 Holomorphic functions defined in terms of integrals 55 5.4 Schwarz reflection principle 57 5.5 Runge's approximation theorem 60 6 Exercises 64 7 Problems 67 Chapter 3. Meromorphic Functions and the Logarithm 71 1 Zeros and poles 72 2 The residue formula 76 2.1 Examples 77 3 Singularities and meromorphic functions 83 4 The argument principle and applications 89 5 Homotopies and simply connected domains 93 6 The complex logarithm 97 7 Fourier series and harmonic functions 101 8 Exercises 103 9 Problems 108 Chapter 4. The Fourier Transform 111 1 The class F 113 2 Action of the Fourier transform on F 114 3 Paley-Wiener theorem 121 4 Exercises 127 5 Problems 131 Chapter 5. Entire Functions 134 1 Jensen's formula 135 2 Functions of finite order 138 3 Infinite products 140 3.1 Generalities 140 3.2 Example: the product formula for the sine function 142 4 Weierstrass infinite products 145 5 Hadamard's factorization theorem 147 6 Exercises 153 7 Problems 156 Chapter 6. The Gamma and Zeta Functions 159 1 The gamma function 160 1.1 Analytic continuation 161 1.2 Further properties of T 163 2 The zeta function 168 2.1 Functional equation and analytic continuation 168 3 Exercises 174 4 Problems 179 Chapter 7. The Zeta Function and Prime Number Theorem 181 1 Zeros of the zeta function 182 1.1 Estimates for 1/s(s) 187 2 Reduction to the functions v and v1 188 2.1 Proof of the asymptotics for v1 194 Note on interchanging double sums 197 3 Exercises 199 4 Problems 203 Chapter 8. Conformal Mappings 205 1 Conformal equivalence and examples 206 1.1 The disc and upper half-plane 208 1.2 Further examples 209 1.3 The Dirichlet problem in a strip 212 2 The Schwarz lemma; automorphisms of the disc and upper half-plane 218 2.1 Automorphisms of the disc 219 2.2 Automorphisms of the upper half-plane 221 3 The Riemann mapping theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 261 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass p function 266 2 The modular character of elliptic functions and Eisenstein series 273 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises 278 4 Problems 281 Chapter 10. Applications of Theta Functions 283 1 Product formula for the Jacobi theta function 284 1.1 Further transformation laws 289 2 Generating functions 293 3 The theorems about sums of squares 296 3.1 The two-squares theorem 297 3.2 The four-squares theorem 304 4 Exercises 309 5 Problems 314 Appendix A: Asymptotics 318 1 Bessel functions 319 2 Laplace's method; Stirling's formula 323 3 The Airy function 328 4 The partition function 334 5 Problems 341 Appendix B: Simple Connectivity and Jord
    Synopsis
    With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory., With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis,Complex Analysiswill be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of whichComplex Analysisis the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
    LC Classification Number
    QA331.7

    Artikelbeschreibung des Verkäufers

    Info zu diesem Verkäufer

    CH Media Store

    99,8% positive Bewertungen21 Tsd. Artikel verkauft

    Mitglied seit Jul 2020
    Antwortet meist innerhalb 24 Stunden
    Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
    Shop besuchenKontakt

    Detaillierte Verkäuferbewertungen

    Durchschnitt in den letzten 12 Monaten
    Genaue Beschreibung
    5.0
    Angemessene Versandkosten
    4.8
    Lieferzeit
    5.0
    Kommunikation
    5.0

    Verkäuferbewertungen (6'999)

    Alle Bewertungen
    Positiv
    Neutral
    Negativ