|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

Mathematik für Deep Learning: Was Sie wissen müssen, um neuronale Netze zu verstehen

Global Dispatch
(7098)
Angemeldet als gewerblicher Verkäufer
US $40,96
Ca.CHF 33,03
Artikelzustand:
Neu
2 verfügbar
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos Economy Shipping.
Standort: Livingston, NJ, USA
Lieferung:
Lieferung zwischen Fr, 29. Aug und Mi, 10. Sep nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
60 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:157213630568
Zuletzt aktualisiert am 02. Aug. 2025 15:23:00 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
EAN
9781718501904
UPC
9781718501904
ISBN
9781718501904
MPN
N/A
Country/Region of Manufacture
United States

Über dieses Produkt

Product Identifiers

Publisher
No Starch Press, Incorporated
ISBN-10
1718501900
ISBN-13
9781718501904
eBay Product ID (ePID)
27050380222

Product Key Features

Number of Pages
344 Pages
Language
English
Publication Name
Math for Deep Learning : What You Need to Know to Understand Neural Networks
Publication Year
2021
Subject
Neural Networks, General, Calculus
Type
Textbook
Subject Area
Mathematics, Computers, Science
Author
Ronald T. Kneusel
Format
Trade Paperback

Dimensions

Item Height
0.9 in
Item Weight
23.2 Oz
Item Length
9.1 in
Item Width
7 in

Additional Product Features

Intended Audience
Trade
LCCN
2021-939724
Reviews
"What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the needed math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach." -Ed Scott, Ph.D., Solutions Architect & IT Enthusiast, "An excellent resource for anyone looking to gain a solid foundation in the mathematics underlying deep learning algorithms. The book is accessible, well-organized, and provides clear explanations and practical examples of key mathematical concepts. I highly recommend it to anyone interested in this field." --Daniel Gutierrez, insideBIGDATA "Ronald T. Kneusel has written a handy and compact guide to the mathematics of deep learning. It will be a well-worn reference for equations and algorithms for the student, scientist, and practitioner of neural networks and machine learning. Complete with equations, figures and even sample code in Python, this book is a wonderful mathematical introduction for the reader." --David S. Mazel, Senior Engineer, Regulus-Group "What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the needed math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach." --Ed Scott, Ph.D., Solutions Architect & IT Enthusiast
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.310151
Table Of Content
Introduction Chapter 1: Setting the Stage Chapter 2: Probability Chapter 3: More Probability Chapter 4: Statistics Chapter 5: Linear Algebra Chapter 6: More Linear Algebra Chapter 7: Differential Calculus Chapter 8: Matrix Calculus Chapter 9: Data Flow in Neural Networks Chapter 10: Backpropagation Chapter 11: Gradient Descent Appendix: Going Further
Synopsis
Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning , you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta., Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning , you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community- SGD, Adam, RMSprop, and Adagrad/Adadelta., To truly understand the power of deep learning, you need to grasp the mathematical concepts that make it tick. Math for Deep Learning will give you a working knowledge of probability, statistics, linear algebra, and differential calculus-the essential math subfields required to practice deep learning successfully. Each subfield is explained with Python code and hands-on, real-world examples that bridge the gap between pure mathematics and its applications in deep learning. The book begins with fundamentals such as Bayes' theorem before progressing to more advanced concepts like training neural networks using vectors, matrices, and derivatives of functions. You'll then put all this math to use as you explore and implement backpropagation and gradient descent- the foundational algorithms that have enabled the Al revolution. You'll learn how to: Use statistics to understand datasets and evaluate models, Apply the rules of probability, Manipulate vectors and matrices to move data through a neural network, Use linear algebra to implement principal component analysis and singular value decomposition, Implement gradient-based optimization techniques like RMSprop, Adagrad, and Adadelta, The core math concepts presented in Math for Deep Learning will give you the foundation you need to unlock the potential of deep learning in your own applications. Book jacket.
LC Classification Number
Q325.5

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

USt-IdNr.: DE 325825342
Info zu diesem Verkäufer

Global Dispatch

92,7% positive Bewertungen32 Tsd. Artikel verkauft

Mitglied seit Mär 2012
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Welcome! We offer a variety of unique and quality items. We wish you a pleasant and delightful shopping experience!
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.8
Angemessene Versandkosten
5.0
Lieferzeit
4.7
Kommunikation
4.5

Verkäuferbewertungen (7'986)

Alle Bewertungen
Positiv
Neutral
Negativ