
Data Mining und Analyse: Grundlegende Konzepte und Algorithmen, Meira Jr, Wagner
US $34,99US $34,99
Sa, 27. Sep, 00:37Sa, 27. Sep, 00:37
Bild 1 von 1

Galerie
Bild 1 von 1

Ähnlichen Artikel verkaufen?
Data Mining und Analyse: Grundlegende Konzepte und Algorithmen, Meira Jr, Wagner
US $34,99
Ca.CHF 27,98
Artikelzustand:
Sehr gut
Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand befindet. Der Einband weist keine offensichtlichen Beschädigungen auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos Economy Shipping.
Standort: Dallas, Texas, USA
Lieferung:
Lieferung zwischen Do, 16. Okt und Di, 21. Okt nach 94104 bei heutigem Zahlungseingang
Rücknahme:
60 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:157349795538
Artikelmerkmale
- Artikelzustand
- ISBN
- 9780521766333
Über dieses Produkt
Product Identifiers
Publisher
Cambridge University Press
ISBN-10
0521766338
ISBN-13
9780521766333
eBay Product ID (ePID)
168282499
Product Key Features
Number of Pages
562 Pages
Publication Name
Data Mining and Analysis : Fundamental concepts and Algorithms
Language
English
Subject
Databases / Data Mining, Databases / General
Publication Year
2014
Type
Textbook
Subject Area
Computers
Format
Hardcover
Dimensions
Item Height
1.2 in
Item Weight
42.3 Oz
Item Length
10.2 in
Item Width
7.2 in
Additional Product Features
Intended Audience
College Audience
LCCN
2013-037544
Reviews
"World-class experts, providing an encyclopedic coverage of all datamining topics, from basic statistics to fundamental methods (clustering, classification, frequent itemsets), to advanced methods (SVD, SVM, kernels, spectral graph theory). For each concept, the book thoughtfully balances the intuition, the arithmetic examples, as well the rigorous math details. It can serve both as a textbook, as well as a reference book." Professor Christos Faloutsos, Carnegie Mellon University and winner of the ACM SIGKDD Innovation Award, "This book by Mohammed Zaki and Wagner Meira Jr is a great option for teaching a course in data mining or data science. It covers both fundamental and advanced data mining topics, explains the mathematical foundations and the algorithms of data science, includes exercises for each chapter, and provides data, slides and other supplementary material on the companion website." Gregory Piatetsky-Shapiro, Founder, ACM SIGKDD, the leading professional organization for Knowledge Discovery and Data Mining
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.312
Table Of Content
1. Data mining and analysis; Part I. Data Analysis Foundations: 2. Numeric attributes; 3. Categorical attributes; 4. Graph data; 5. Kernel methods; 6. High-dimensional data; 7. Dimensionality reduction; Part II. Frequent Pattern Mining: 8. Itemset mining; 9. Summarizing itemsets; 10. Sequence mining; 11. Graph pattern mining; 12. Pattern and rule assessment; Part III. Clustering: 13. Representative-based clustering; 14. Hierarchical clustering; 15. Density-based clustering; 16. Spectral and graph clustering; 17. Clustering validation; Part IV. Classification: 18. Probabilistic classification; 19. Decision tree classifier; 20. Linear discriminant analysis; 21. Support vector machines; 22. Classification assessment.
Synopsis
The fundamental algorithms in data mining and analysis form the basis for the emerging field of data science, which includes automated methods to analyze patterns and models for all kinds of data, with applications ranging from scientific discovery to business intelligence and analytics. This textbook for senior undergraduate and graduate data mining courses provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include exploratory data analysis, pattern mining, clustering, and classification. The book lays the basic foundations of these tasks, and also covers cutting-edge topics such as kernel methods, high-dimensional data analysis, and complex graphs and networks. With its comprehensive coverage, algorithmic perspective, and wealth of examples, this book offers solid guidance in data mining for students, researchers, and practitioners alike. Key features: - Covers both core methods and cutting-edge research - Algorithmic approach with open-source implementations - Minimal prerequisites: all key mathematical concepts are presented, as is the intuition behind the formulas - Short, self-contained chapters with class-tested examples and exercises allow for flexibility in designing a course and for easy reference - Supplementary website with lecture slides, videos, project ideas, and more, The fundamental algorithms in data mining and analysis form the basis for the emerging field of data science, which includes automated methods to analyze patterns and models for all kinds of data, with applications ranging from scientific discovery to business intelligence and analytics. This textbook for senior undergraduate and graduate data mining courses provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include exploratory data analysis, pattern mining, clustering, and classification. The book lays the basic foundations of these tasks, and also covers cutting-edge topics such as kernel methods, high-dimensional data analysis, and complex graphs and networks. With its comprehensive coverage, algorithmic perspective, and wealth of examples, this book offers solid guidance in data mining for students, researchers, and practitioners alike., The fundamental algorithms in data mining and analysis are the basis for business intelligence and analytics, automated methods to analyze patterns, and models of data. This textbook for senior undergraduate and graduate data mining courses provides a comprehensive overview from an algorithmic perspective, integrating concepts from machine learning and statistics.
LC Classification Number
QA76.9.D343 Z36 2014
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
hpb-ruby
98,6% positive Bewertungen•161 Tsd. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Verkäuferbewertungen (49'565)
Dieser Artikel (1)
Alle Artikel (49'565)
- Automatische Bewertung von eBay- Bewertung vom Käufer.Letzter MonatBestellung pünktlich und problemlos geliefert
- Automatische Bewertung von eBay- Bewertung vom Käufer.Letzter MonatBestellung pünktlich und problemlos geliefert
- Automatische Bewertung von eBay- Bewertung vom Käufer.Letzter MonatBestellung pünktlich und problemlos geliefert
- Automatische Bewertung von eBay- Bewertung vom Käufer.Letzter MonatBestellung pünktlich und problemlos geliefert