|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

Statistisches Lernen aus Regressionsperspektive (Springertexte - SEHR GUT)

Go.Retro.Go.store
(4446)
Angemeldet als gewerblicher Verkäufer
US $12,00
Ca.CHF 9,67
oder Preisvorschlag
Artikelzustand:
Sehr gut
Ganz entspannt. Rückgaben akzeptiert.
Versand:
US $8,71 (ca. CHF 7,02) USPS Ground Advantage®.
Standort: Randolph, New Jersey, USA
Lieferung:
Lieferung zwischen Sa, 30. Aug und Sa, 6. Sep nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:177248326907

Artikelmerkmale

Artikelzustand
Sehr gut: Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand ...
Brand
Unbranded
Book Title
Statistical Learning from a Regression Perspective (Springer Tex
MPN
Does not apply
ISBN
9783319440477

Über dieses Produkt

Product Identifiers

Publisher
Springer
ISBN-10
3319440470
ISBN-13
9783319440477
eBay Product ID (ePID)
229154903

Product Key Features

Number of Pages
Xxv, 347 Pages
Publication Name
Statistical Learning from a Regression Perspective
Language
English
Publication Year
2016
Subject
Public Health, Probability & Statistics / General, Probability & Statistics / Regression Analysis, Statistics
Type
Textbook
Subject Area
Mathematics, Social Science, Medical
Author
Richard A. Berk
Series
Springer Texts in Statistics Ser.
Format
Hardcover

Dimensions

Item Weight
31.3 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Edition Number
2
Intended Audience
Trade
Dewey Edition
22
Reviews
"The intended audience includes advanced undergraduate and graduate students biostatistics in the fields of social science and life science, as well as researchers who want to apply statistical learning procedures to scientific and policy problems. ... This is an excellent overview of statistical learning applications. It is strongly recommended to advanced researchers and statisticians particularly interested in the social and behavioral aspects of data analysis." (Puja Sitwala, Doody's Book Reviews, January, 2017)
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
519.536
Table Of Content
Statistical Learning as a Regression Problem.- Splines, Smoothers, and Kernels.- Classification and Regression Trees (CART).- Bagging.- Random Forests.- Boosting.- Support Vector Machines.- Some Other Procedures Briefly.- Broader Implications and a Bit of Craft Lore.
Synopsis
This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. As in the first edition, a unifying theme is supervised learning that can be treated as a form of regression analysis. Key concepts and procedures are illustrated with real applications, especially those with practical implications. The material is written for upper undergraduate level and graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. The author uses this book in a course on modern regression for the social, behavioral, and biological sciences. All of the analyses included are done in R with code routinely provided., Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one's data and not apply statistical learning procedures that require more than the data can provide. The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R., This book considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response., Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one s data and not apply statistical learning procedures that require more than the data can provide. The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R. "
LC Classification Number
QA276-280

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

Go.Retro.Go.store

100% positive Bewertungen12 Tsd. Artikel verkauft

Mitglied seit Mai 2008
Angemeldet als gewerblicher Verkäufer
Welcome to our eBay store! We are a family-owned business with over 10 years of experience in buying and selling quality products. Our store features a diverse selection of new and used items, ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
5.0
Angemessene Versandkosten
4.8
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (4'357)

Alle Bewertungen
Positiv
Neutral
Negativ