
Modellieren und Denken mit Bayesian Networks von Adnan Darwiche Hardcover Buch
US $30,09US $30,09
Fr, 19. Sep, 05:46Fr, 19. Sep, 05:46
Bild 1 von 1

Galerie
Bild 1 von 1

Ähnlichen Artikel verkaufen?
Modellieren und Denken mit Bayesian Networks von Adnan Darwiche Hardcover Buch
US $30,09
Ca.CHF 23,95
Artikelzustand:
Akzeptabel
Buch mit deutlichen Gebrauchsspuren. Der Einband kann einige Beschädigungen aufweisen, ist aber in seiner Gesamtheit noch intakt. Die Bindung ist möglicherweise leicht beschädigt, in ihrer Gesamtheit aber noch intakt. In den Randbereichen wurden evtl. Notizen gemacht, der Text kann Unterstreichungen und Markierungen enthalten, es fehlen aber keine Seiten und es ist alles vorhanden, was für die Lesbarkeit oder das Verständnis des Textes notwendig ist. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos USPS Media MailTM.
Standort: San Diego, California, USA
Lieferung:
Lieferung zwischen Mi, 8. Okt und Sa, 11. Okt bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:187010981566
Der gesamte Erlös nach Abzug der Kosten geht an Goodwill Industries of San Diego County
- Offizielles eBay für Charity-Angebot. Mehr erfahren
- Verkauf zugunsten einer geprüften gemeinnützigen Partnerorganisation.
Artikelmerkmale
- Artikelzustand
- ISBN
- 9780521884389
Über dieses Produkt
Product Identifiers
Publisher
Cambridge University Press
ISBN-10
0521884381
ISBN-13
9780521884389
eBay Product ID (ePID)
71171823
Product Key Features
Number of Pages
562 Pages
Publication Name
Modeling and Reasoning with Bayesian Networks
Language
English
Publication Year
2009
Subject
Probability & Statistics / General, Natural Language Processing, Logic, Probability & Statistics / Bayesian Analysis
Type
Textbook
Subject Area
Mathematics, Computers, Philosophy
Format
Hardcover
Dimensions
Item Height
1.2 in
Item Weight
40.9 Oz
Item Length
10 in
Item Width
7 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2008-044605
Dewey Edition
22
Reviews
"The book is both practical and advanced... The book should definitely be in the bookshelf of everyone who teaches Bayesian networks and builds probabilistic reasoning agents." Yang Xiang, Artificial Intelligence, "This is an elegant and well-written book. The book provides an accessible walkthrough and formal treatment of BNs grounded in propositional logic. The book will make an excellent textbook; it covers topics suitable for both undergraduate and graduate courses. It will also help practitioners get a firm grasp of the fundamentals of modeling and inference with BNs, as well as some recent advances." Yousri ElFattah, Computing Reviews, "Bayesian networks are as important to AI and machine learning as Boolean circuits are to computer science. Adnan Darwiche is a leading expert in this area and this book provides a superb introduction to both theory and practice, with much useful material not found elsewhere." Stuart Russell, University of California, Berkeley, '... both practical and advanced. ... The first five chapters are sufficient for students and practitioners to gain the necessary knowledge in order to build Bayesian networks for moderately sized applications with the aid of a software tool. ... All major inference methods are covered in later chapters which allow researchers and software developers to implement their own software systems tailored to their needs. ... It is a comprehensive book that can be used for self study by students and newcomers to the field or as a companion for courses on probabilistic reasoning. Experienced researchers may also find deeper information on some topics. In my opinion, the book should definitely be [on] the bookshelf of everyone who teaches Bayesian networks and builds probabilistic reasoning agents.' Artificial Intelligence, "The book is clearly written. In all, the clarity, continuity, and depth of the presentation mean that this would make a first class course text, as well as serving as a very useful reference work. I shall certainly recommend it for teaching purposes, and doubtless refer to it to remind myself about particular aspects of such models." David J. Hand, International Statistical Review, '[This] book will make an excellent textbook; it covers topics suitable for both undergraduate and graduate courses. It will also help practitioners get a firm grasp of the fundamentals of modeling and inference with BNs, as well as some recent advances.' ACM Computing Reviews, '… both practical and advanced … The first five chapters are sufficient for students and practitioners to gain the necessary knowledge in order to build Bayesian networks for moderately sized applications with the aid of a software tool … All major inference methods are covered in later chapters which allow researchers and software developers to implement their own software systems tailored to their needs … It is a comprehensive book that can be used for self study by students and newcomers to the field or as a companion for courses on probabilistic reasoning. Experienced researchers may also find deeper information on some topics. In my opinion, the book should definitely be [on] the bookshelf of everyone who teaches Bayesian networks and builds probabilistic reasoning agents.' Artificial Intelligence, "Bayesian networks have revolutionized AI. This book gives a clear and insightful overview of what we have learnt in 25 years of research, by one of the leading researchers. It is both accessible and deep, making it essential reading for both beginning students and advanced researchers." David Poole, Professor of Computer Science University of British Columbia, "Bayesian Networks are models for representing and using probabilistic knowledge, introduced in the field of Artificial Intelligence by Judea Pearl back in the 1980's. Since then many inference methods, learning algorithms, and applications of Bayesian Networks have been developed, tested, and deployed, making Bayesian Networks into a solid and established framework for reasoning with uncertain information. Adnan Darwiche, a leading researcher in the field, has produced a book that provides a clear, coherent, and advanced introduction to Bayesian Networks that will appeal to students, practitioners, and scientists alike. A wonderful exposition that starts with propositional logic and probability calculus, and ends with state-of-the-art inference methods and learning algorithms. In my view, the best book on Bayesian Networks since Pearl's seminal book." Hector Geffner, ICREA and Universitat Pompeu Fabra
Illustrated
Yes
Dewey Decimal
519.5/42
Table Of Content
1. Introduction; 2. Propositional logic; 3. Probability calculus; 4. Bayesian networks; 5. Building Bayesian networks; 6. Inference by variable elimination; 7. Inference by factor elimination; 8. Inference by conditioning; 9. Models for graph decomposition; 10. Most likely instantiations; 11. The complexity of probabilistic inference; 12. Compiling Bayesian networks; 13. Inference with local structure; 14. Approximate inference by belief propagation; 15. Approximate inference by stochastic sampling; 16. Sensitivity analysis; 17. Learning: the maximum likelihood approach; 18. Learning: the Bayesian approach; Appendix A: notation; Appendix B: concepts from information theory; Appendix C: fixed point iterative methods; Appendix D: constrained optimization.
Synopsis
This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer., This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis., This book is a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The treatment of exact algorithms covers the main inference paradigms based on elimination and conditioning and includes advanced methods for compiling Bayesian networks, time-space tradeoffs, and exploiting local structure of massively connected networks. The treatment of approximate algorithms covers the main inference paradigms based on sampling and optimization and includes influential algorithms such as importance sampling, MCMC, and belief propagation. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.
LC Classification Number
QA279.5 .D37 2009
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
Goodwill Industries San Diego Books
99,5% positive Bewertungen•469 Tsd. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Beliebte Kategorien in diesem Shop
Verkäuferbewertungen (168'769)
Dieser Artikel (1)
Alle Artikel (168'769)
- Automatische Bewertung von eBay- Bewertung vom Käufer.Letzter MonatBestellung pünktlich und problemlos geliefert
- eBay 自動留下信用評價- Bewertung vom Käufer.Letzter Monat訂單準時送達,沒遇到任何問題
- eBay 自動留下信用評價- Bewertung vom Käufer.Letzter Monat訂單準時送達,沒遇到任何問題
- eBay 自動留下信用評價- Bewertung vom Käufer.Letzter Monat訂單準時送達,沒遇到任何問題
Noch mehr entdecken:
- Bücher über Positives Denken Sachbuch,
- Deutsche Bücher über Positives Denken Sachbuch,
- Sachbuch als gebundene Ausgabe Bücher über Positives Denken,
- Bücher über Positives Denken Sachbuch im Taschenbuch-Format,
- Lebensführung-, - Motivation- & - Karriere-Sachbuch Bücher über Positives Denken,
- Erwachsene Sachbuch Bücher Bücher,
- Bücher,
- Bücher über Bücher Sachbuch Bilder,
- Bücher Sachbuch Jugendliche,
- Bilder Belletristik-Bücher