Lecture Notes in Economics and Mathematical Systems 540 Springer Holger Kraft

MochiMoney
(1852)
Angemeldet als gewerblicher Verkäufer
US $49,99
Ca.CHF 40,22
oder Preisvorschlag
Artikelzustand:
Neuwertig
Ganz entspannt. Kostenloser Versand & Rückversand.
Versand:
Kostenlos Standard Shipping.
Standort: Fresno, California, USA
Lieferung:
Lieferung zwischen Mi, 5. Nov und Sa, 8. Nov nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Verkäufer zahlt Rückversand.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:203847233113
Zuletzt aktualisiert am 16. Feb. 2023 00:53:51 MEZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neuwertig: Buch, das wie neu aussieht, aber bereits gelesen wurde. Der Einband weist keine ...
Subject
Business & Economics
Topic
Economics
ISBN
9783540212300
EAN
9783540212300
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Springer Berlin / Heidelberg
ISBN-10
3540212302
ISBN-13
9783540212300
eBay Product ID (ePID)
30763149

Product Key Features

Number of Pages
X, 174 Pages
Publication Name
Optimal Portfolios with Stochastic Interest Rates and Defaultable ASSETS
Language
English
Subject
Investments & Securities / Portfolio Management, Finance / General, Econometrics, Applied
Publication Year
2004
Type
Textbook
Author
Holger Kraft
Subject Area
Mathematics, Business & Economics
Series
Lecture Notes in Economics and Mathematical Systems Ser.
Format
Perfect

Dimensions

Item Height
0.2 in
Item Weight
21.2 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2004-103617
Dewey Edition
0
Series Volume Number
540
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
332.6015192
Table Of Content
1 Preliminaries from Stochastics.- 1.1 Stochastic Differential Equations.- 1.2 Stochastic Optimal Control.- 2 Optimal Portfolios with Stochastic Interest Rates.- 2.1 Introduction.- 2.2 Ho-Lee and Vasicek Model.- 2.3 Dothan and Black-Karasinski Model.- 2.4 Cox-Ingersoll-Ross Model.- 2.5 Widening the Investment Universe.- 2.6 Conclusion.- 3 Elasticity Approach to Portfolio Optimization.- 3.1 Introduction.- 3.2 Elasticity in Portfolio Optimization.- 3.3 Duration in Portfolio Optimization.- 3.4 Conclusion.- 3.5 Appendix.- 4 Barrier Derivatives with Curved Boundaries.- 4.1 Introduction.- 4.2 Bjork's Result.- 4.3 Deterministic Exponential Boundaries.- 4.4 Discounted Barrier and Gaussian Interest Rates.- 4.5 Application: Pricing of Defaultable Bonds.- 4.6 Conclusion.- 5 Optimal Portfolios with Defaultable Assets -- A Firm Value Approach.- 5.1 Introduction.- 5.2 The Unconstrained Case.- 5.3 From the Unconstrained to the Constrained Case.- 5.4 The Constrained Case.- 5.5 Conclusion.- References.- Abbreviations.- Notations.
Synopsis
This thesis summarizes most of my recent research in the field of portfolio optimization. The main topics which I have addressed are portfolio problems with stochastic interest rates and portfolio problems with defaultable assets. The starting point for my research was the paper "A stochastic control ap­ proach to portfolio problems with stochastic interest rates" (jointly with Ralf Korn), in which we solved portfolio problems given a Vasicek term structure of the short rate. Having considered the Vasicek model, it was obvious that I should analyze portfolio problems where the interest rate dynamics are gov­ erned by other common short rate models. The relevant results are presented in Chapter 2. The second main issue concerns portfolio problems with default able assets modeled in a firm value framework. Since the assets of a firm then correspond to contingent claims on firm value, I searched for a way to easily deal with such claims in portfolio problems. For this reason, I developed the elasticity approach to portfolio optimization which is presented in Chapter 3. However, this way of tackling portfolio problems is not restricted to portfolio problems with default able assets only, but it provides a general framework allowing for a compact formulation of portfolio problems even if interest rates are stochastic., The continuous-time portfolio problem consists of finding the optimal investment strategy of an investor. In the classical Merton problem the investor can allocate his funds to a riskless savings account and risky assets. However, to get explicit results, it is assumed that the interest rates are deterministic and that the assets are default free. In this monograph both assumptions are weakened: The author analyzes and solves portfolio problems with stochastic interest rates and with defaultable assets. Besides, he briefly discusses how portfolio problems with foreign assets can be handled. The focus of the monograph is twofold: On the one hand, the economical problems are carefully explained, on the other hand their formal solution is rigorously presented. For this reason the text should be of interest to researchers with a Finance background as well as to researchers with a more formal background who would like to see how mathematics is applied to portfolio theory., This thesis summarizes most of my recent research in the field of portfolio optimization. The main topics which I have addressed are portfolio problems with stochastic interest rates and portfolio problems with defaultable assets. The starting point for my research was the paper "A stochastic control ap- proach to portfolio problems with stochastic interest rates" (jointly with Ralf Korn), in which we solved portfolio problems given a Vasicek term structure of the short rate. Having considered the Vasicek model, it was obvious that I should analyze portfolio problems where the interest rate dynamics are gov- erned by other common short rate models. The relevant results are presented in Chapter 2. The second main issue concerns portfolio problems with default able assets modeled in a firm value framework. Since the assets of a firm then correspond to contingent claims on firm value, I searched for a way to easily deal with such claims in portfolio problems. For this reason, I developed the elasticity approach to portfolio optimization which is presented in Chapter 3. However, this way of tackling portfolio problems is not restricted to portfolio problems with default able assets only, but it provides a general framework allowing for a compact formulation of portfolio problems even if interest rates are stochastic.
LC Classification Number
HG1-9999

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

MochiMoney

100% positive Bewertungen6.2 Tsd. Artikel verkauft

Mitglied seit Dez 2018
Angemeldet als gewerblicher Verkäufer
Thank you for stopping by MochiMoney ! We are a small business based out of California that tries to provide a wide variety of merchandise both new and used at a competitive price! We value our ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.6
Angemessene Versandkosten
4.0
Lieferzeit
4.9
Kommunikation
--

Verkäuferbewertungen (1'843)

Alle Bewertungenselected
Positiv
Neutral
Negativ