Dieses Angebot wurde verkauft am Mi, 13. Aug um 03:11.
Machine Learning : A Probabilistic Perspective by Kevin Murphy.
Verkauft
Machine Learning : A Probabilistic Perspective by Kevin Murphy.
US $70,99US $70,99
Do, 14. Aug, 03:11Do, 14. Aug, 03:11

Machine Learning : A Probabilistic Perspective by Kevin Murphy.

ab123klmn
(22)
Angemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $70,99
Ca.CHF 56,54
Artikelzustand:
Neu
    Versand:
    US $8,97 (ca. CHF 7,14) USPS Media MailTM.
    Standort: Dearborn Heights, Michigan, USA
    Lieferung:
    Lieferung zwischen Fr, 3. Okt und Mi, 8. Okt nach 94104 bei heutigem Zahlungseingang
    Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
    Rücknahme:
    30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
    Zahlungen:
         Diners Club

    Sicher einkaufen

    eBay-Käuferschutz
    Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
    Der Verkäufer ist für dieses Angebot verantwortlich.
    eBay-Artikelnr.:204801741124
    Zuletzt aktualisiert am 05. Mär. 2025 11:54:08 MEZAlle Änderungen ansehenAlle Änderungen ansehen

    Artikelmerkmale

    Artikelzustand
    Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
    ISBN
    9780262018029
    Kategorie

    Über dieses Produkt

    Product Identifiers

    Publisher
    MIT Press
    ISBN-10
    0262018020
    ISBN-13
    9780262018029
    eBay Product ID (ePID)
    117365328

    Product Key Features

    Number of Pages
    1104 Pages
    Language
    English
    Publication Name
    Machine Learning : a Probabilistic Perspective
    Subject
    Algebra / Linear, Probability & Statistics / General, Computer Vision & Pattern Recognition
    Publication Year
    2012
    Type
    Textbook
    Author
    Kevin P. Murphy
    Subject Area
    Mathematics, Computers
    Series
    Adaptive Computation and Machine Learning Ser.
    Format
    Hardcover

    Dimensions

    Item Height
    1.8 in
    Item Weight
    67.8 Oz
    Item Length
    9.3 in
    Item Width
    8.4 in

    Additional Product Features

    Intended Audience
    Trade
    LCCN
    2012-004558
    Reviews
    This comprehensive book should be of great interest to learners and practitioners inthe field of machine learning., "This comprehensive book should be of great interest to learners and practitioners inthe field of machine learning." -- British Computer Society, This comprehensive book should be of great interest to learners and practitioners in the field of machine learning., This comprehensive book should be of great interest to learners and practitioners in the field of machine learning.-- British Computer Society --
    Dewey Edition
    23
    Illustrated
    Yes
    Dewey Decimal
    006.3/1
    Synopsis
    A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package-PMTK (probabilistic modeling toolkit)-that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students., A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
    LC Classification Number
    Q325.5.M87 2012

    Artikelbeschreibung des Verkäufers

    Info zu diesem Verkäufer

    ab123klmn

    100% positive Bewertungen62 Artikel verkauft

    Mitglied seit Sep 2003
    Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.

    Verkäuferbewertungen (14)

    Alle Bewertungen
    Positiv
    Neutral
    Negativ