Fundamentals of Matrix Computations 3rd Edition by David S Watkins 978047052833

pcc2-discount
(566)
PrivatAngemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $49,99
Ca.CHF 40,19
Artikelzustand:
Akzeptabel
Versand:
US $0,01 (ca. CHF 0,01) Economy Shipping.
Standort: Winston-Salem, North Carolina, USA
Lieferung:
Lieferung zwischen Do, 4. Dez und Di, 9. Dez nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
Keine Rücknahme.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:205242247216
Zuletzt aktualisiert am 19. Jun. 2025 05:40:54 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Akzeptabel: Buch mit deutlichen Gebrauchsspuren. Der Einband kann einige Beschädigungen aufweisen, ...
ISBN
9780470528334
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Wiley & Sons, Incorporated, John
ISBN-10
0470528338
ISBN-13
9780470528334
eBay Product ID (ePID)
80517212

Product Key Features

Number of Pages
664 Pages
Language
English
Publication Name
Fundamentals of Matrix Computations
Subject
Algebra / Linear, Matrices
Publication Year
2010
Type
Textbook
Subject Area
Mathematics
Author
David S. Watkins
Series
Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts Ser.
Format
Hardcover

Dimensions

Item Height
1.6 in
Item Weight
37.7 Oz
Item Length
9.3 in
Item Width
6.4 in

Additional Product Features

Edition Number
3
Intended Audience
Scholarly & Professional
LCCN
2010-001933
Dewey Edition
22
Series Volume Number
94
Illustrated
Yes
Dewey Decimal
512.9/434
Table Of Content
Preface. Acknowledgments. 1 Gaussian Elimination and Its Variants. 1.1 Matrix Multiplication. 1.2 Systems of Linear Equations. 1.3 Triangular Systems. 1.4 Positive Definite Systems; Cholesky Decomposition. 1.5 Banded Positive Definite Systems. 1.6 Sparse Positive Definite Systems. 1.7 Gaussian Elimination and the LU Decomposition. 1.8 Gaussain Elimination and Pivoting. 1.9 Sparse Gaussian Elimination. 2 Sensitivity of Linear Systems. 2.1 Vector and Matrix Norms. 2.2 Condition Numbers. 2.3 Perturbing the Coefficient Matrix. 2.4 A Posteriori Error Analysis Using the Residual. 2.5 Roundoff Errors; Backward Stability. 2.6 Propagation of Roundoff Errors. 2.7 Backward Error Analysis of Gaussian Elimination. 2.8 Scaling. 2.9 Componentwise Sensitivity Analysis. 3 The Least Squares Problem. 3.1 The Discrete Square Problem. 3.2 Orthogonal Matrices, Rotators and Reflectors. 3.3 Solution of the Least Squares Problem. 3.4 The Gram-Schmidt Process. 3.5 Geometric Approach. 3.6 Updating the QR Decomposition. 4 The Singular Value Decomposition. 4.1 Introduction. 4.2 Some Basic Applications of Singular Values. 4.3 The SVD and the Least Squares Problem. 4.4 Sensitivity of the Least Squares Problem. 5 Eigenvalues and Eigenvectors I. 5.1 Systems of Differential Equations. 5.2 Basic Facts. 5.3 The Power Method and Some Simple Extensions. 5.4 Similarity Transforms. 5.5 Reduction to Hessenberg and Tridiagonal Forms. 5.6 Francis's Algorithm. 5.7 Use of Francis's Algorithm to Calculate Eigenvectors. 5.8 The SVD Revisted. 6 Eigenvalues and Eigenvectors II. 6.1 Eigenspaces and Invariant Subspaces. 6.2 Subspace Iteration and Simultaneous Iteration. 6.3 Krylov Subspaces and Francis's Algorithm. 6.4 Large Sparse Eigenvalue Problems. 6.5 Implicit Restarts. 6.6 The Jacobi-Davidson and Related Algorithms. 7 Eigenvalues and Eigenvectors III. 7.1 Sensitivity of Eigenvalues and Eigenvectors. 7.2 Methods for the Symmetric Eigenvalue Problem. 7.3 Product Eigenvalue Problems. 7.4 The Generalized Eigenvalue Problem. 8 Iterative Methods for Linear Systems. 8.1 A Model Problem. 8.2 The Classical Iterative Methods. 8.3 Convergence of Iterative Methods. 8.4 Descent Methods; Steepest Descent. 8.5 On Stopping Criteria. 8.6 Preconditioners. 8.7 The Conjugate-Gradient Method. 8.8 Derivation of the CG Algorithm. 8.9 Convergence of the CG Algorithm. 8.10 Indefinite and Nonsymmetric Problems. References. Index. Index of MATLAB Terms.
Synopsis
This Third Edition explains how to perform matrix computations efficiently and accurately by providing a detailed introduction to the fundamental ideas of numerical linear algebra and utilizes MATLAB® to perform elaborate computational experiments., This new, modernized edition provides a clear and thorough introduction to matrix computations, a key component of scientific computing Retaining the accessible and hands-on style of its predecessor, Fundamentals of Matrix Computations, Third Edition thoroughly details matrix computations and the accompanying theory alongside the authors useful insights. The book presents the most important algorithms of numerical linear algebra and helps readers to understand how the algorithms are developed and why they work. Along with new and updated examples, the Third Edition features: A novel approach to Francis QR algorithm that explains its properties without reference to the basic QR algorithm Application of classical Gram-Schmidt with reorthogonalization A revised approach to the derivation of the Golub-Reinsch SVD algorithm New coverage on solving product eigenvalue problems Expanded treatment of the Jacobi-Davidson method A new discussion on stopping criteria for iterative methods for solving linear equations Throughout the book, numerous new and updated exercises ranging from routine computations and verifications to challenging programming and proofs are provided, allowing readers to immediately engage in applying the presented concepts. The new edition also incorporates MATLAB to solve real-world problems in electrical circuits, mass-spring systems, and simple partial differential equations, and an index of MATLAB terms assists readers with understanding the basic concepts related to the software. Fundamentals of Matrix Computations, Third Edition is an excellent book for courses on matrix computations and applied numerical linear algebra at the upper-undergraduate and graduate level. The book is also a valuable resource for researchers and practitioners working in the fields of engineering and computer science who need to know how to solve problems involving matrix computations., This new, modernized edition provides a clear and thorough introduction to matrix computations,a key component of scientific computing Retaining the accessible and hands-on style of its predecessor, Fundamentals of Matrix Computations , Third Edition thoroughly details matrix computations and the accompanying theory alongside the author's useful insights. The book presents the most important algorithms of numerical linear algebra and helps readers to understand how the algorithms are developed and why they work. Along with new and updated examples, the Third Edition features: A novel approach to Francis' QR algorithm that explains its properties without reference to the basic QR algorithm Application of classical Gram-Schmidt with reorthogonalization A revised approach to the derivation of the Golub-Reinsch SVD algorithm New coverage on solving product eigenvalue problems Expanded treatment of the Jacobi-Davidson method A new discussion on stopping criteria for iterative methods for solving linear equations Throughout the book, numerous new and updated exercises--ranging from routine computations and verifications to challenging programming and proofs--are provided, allowing readers to immediately engage in applying the presented concepts. The new edition also incorporates MATLAB to solve real-world problems in electrical circuits, mass-spring systems, and simple partial differential equations, and an index of MATLAB terms assists readers with understanding the basic concepts related to the software. Fundamentals of Matrix Computations , Third Edition is an excellent book for courses on matrix computations and applied numerical linear algebra at the upper-undergraduate and graduate level. The book is also a valuable resource for researchers and practitioners working in the fields of engineering and computer science who need to know how to solve problems involving matrix computations., This new, modernized edition provides a clear and thorough introduction to matrix computations, a key component of scientific computing Retaining the accessible and hands-on style of its predecessor, Fundamentals of Matrix Computations , Third Edition thoroughly details matrix computations and the accompanying theory alongside the author's useful insights. The book presents the most important algorithms of numerical linear algebra and helps readers to understand how the algorithms are developed and why they work. Along with new and updated examples, the Third Edition features: A novel approach to Francis' QR algorithm that explains its properties without reference to the basic QR algorithm Application of classical Gram-Schmidt with reorthogonalization A revised approach to the derivation of the Golub-Reinsch SVD algorithm New coverage on solving product eigenvalue problems Expanded treatment of the Jacobi-Davidson method A new discussion on stopping criteria for iterative methods for solving linear equations Throughout the book, numerous new and updated exercises--ranging from routine computations and verifications to challenging programming and proofs--are provided, allowing readers to immediately engage in applying the presented concepts. The new edition also incorporates MATLAB to solve real-world problems in electrical circuits, mass-spring systems, and simple partial differential equations, and an index of MATLAB terms assists readers with understanding the basic concepts related to the software. Fundamentals of Matrix Computations , Third Edition is an excellent book for courses on matrix computations and applied numerical linear algebra at the upper-undergraduate and graduate level. The book is also a valuable resource for researchers and practitioners working in the fields of engineering and computer science who need to know how to solve problems involving matrix computations.
LC Classification Number
QA188.W38 2010

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

pcc2-discount

100% positive Bewertungen2.4 Tsd. Artikel verkauft

Mitglied seit Mai 2017
Antwortet meist innerhalb 24 Stunden
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.8
Angemessene Versandkosten
4.9
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (583)

Alle Bewertungenselected
Positiv
Neutral
Negativ
  • u***m (1409)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Highly trustworthy seller with quick responsiveness! Thank you so much! A+++
  • 7***n (1626)- Bewertung vom Käufer.
    Letztes Jahr
    Bestätigter Kauf
    Merit Lip Oils arrived fast & as advertised. Regrettably, even though I watched customer review videos online prior to purchase and thought the color would work, it was actually much too dark for my skin tone :( I contacted Seller who, though they did not take returns, generously offered to refund close to half the total cost which I thought was fair. Thank you!
  • r***d (1481)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Fast to ship-As described-Cute socks-Thanks