Bild 1 von 4




Galerie
Bild 1 von 4




Ähnlichen Artikel verkaufen?
Einführung in Lügengruppen und die Geometrie homogener Räume 9780821827789
US $27,99
Ca.CHF 22,60
oder Preisvorschlag
Artikelzustand:
Sehr gut
Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand befindet. Der Einband weist keine offensichtlichen Beschädigungen auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
US $5,22 (ca. CHF 4,22) USPS Media MailTM.
Standort: Bellingham, Washington, USA
Lieferung:
Lieferung zwischen Do, 21. Aug und Mo, 25. Aug bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:225416150413
Artikelmerkmale
- Artikelzustand
- ISBN
- 9780821827789
Über dieses Produkt
Product Identifiers
Publisher
American Mathematical Society
ISBN-10
0821827782
ISBN-13
9780821827789
eBay Product ID (ePID)
30452387
Product Key Features
Number of Pages
142 Pages
Language
English
Publication Name
Introduction to Lie Groups and the Geometry of Homogeneous Spaces
Subject
Group Theory, Geometry / Algebraic
Publication Year
2003
Type
Textbook
Subject Area
Mathematics
Series
Student Mathematical Library
Format
Trade Paperback
Dimensions
Item Height
0.4 in
Item Weight
7.2 Oz
Item Length
8.4 in
Item Width
5.6 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2003-058352
TitleLeading
An
Dewey Edition
22
Series Volume Number
22
Illustrated
Yes
Dewey Decimal
512/.55
Table Of Content
Lie groups Maximal tori and the classification theorem The geometry of a compact Lie group Homogeneous spaces The geometry of a reductive homogeneous space Symmetric spaces Generalized flag manifolds Advanced topics Bibliography Index.
Synopsis
It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics: algebra, differential geometry, algebraic geometry, analysis, and differential equations. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of representation theory. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute.A good understanding of them provides lasting intuition, especially in differential geometry. The author provides several examples and computations. Topics discussed include the classification of compact and connected Lie groups, Lie algebras, geometrical aspects of compact Lie groups and reductive homogeneous spaces, and important classes of homogeneous spaces, such as symmetric spaces and flag manifolds. Applications to more advanced topics are also included, such as homogeneous Einstein metrics, Hamiltonian systems, and homogeneous geodesics in homogeneous spaces. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics., It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics: algebra, differential geometry, algebraic geometry, analysis, and differential equations. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of representation theory. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The author provides several examples and computations. Topics discussed include the classification of compact and connected Lie groups, Lie algebras, geometrical aspects of compact Lie groups and re, It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics: algebra, differential geometry, algebraic geometry, analysis, and differential equations. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the readerstarted. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of representation theory. Lie groups and homogeneous spaces are especiallyuseful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The author provides several examples and computations. Topics discussed include the classification of compact and connected Lie groups, Lie algebras, geometrical aspects of compact Lie groups and reductive homogeneous spaces, and important classes of homogeneous spaces, such assymmetric spaces and flag manifolds. Applications to more advanced topics are also included, such as homogeneous Einstein metrics, Hamiltonian systems, and homogeneous geodesics in homogeneous spaces. The book is suitable for advanced undergraduates, graduate students, and research mathematiciansinterested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics., The theory of Lie groups involves many areas of mathematics: algebra, differential geometry, algebraic geometry, analysis, and differential equations. This work outlines the prerequisites to get the reader started, and then chooses a path through this theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces.
LC Classification Number
QA387.A78 2003
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
All Ways Curious
100% positive Bewertungen•716 Artikel verkauft
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Verkäuferbewertungen (278)
- t***5 (536)- Bewertung vom Käufer.Letzter MonatBestätigter KaufThanks
- h***l (65)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufBook is in great condition as described and arrived quickly. Very thoroughly and thoughtfully wrapped. Wonderful seller, thank you!
- t***9 (169)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufWonderful little mug! Packed with great care.