Dieses Angebot wurde verkauft am Fr, 15. Aug um 03:53.
Generalized Linear Models With Examples in R by Peter K. Dunn
Verkauft
Generalized Linear Models With Examples in R by Peter K. Dunn
US $49,99US $49,99
Fr, 15. Aug, 15:53Fr, 15. Aug, 15:53

Generalized Linear Models With Examples in R by Peter K. Dunn

Klinger's Treasure Chest
(1305)
Angemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $49,99
Ca.CHF 39,56
oder Preisvorschlag
Artikelzustand:
Neuwertig
    Versand:
    US $6,97 (ca. CHF 5,52) USPS Media MailTM.
    Standort: Saint Johns, Florida, USA
    Lieferung:
    Lieferung zwischen Mo, 29. Sep und Sa, 4. Okt nach 94104 bei heutigem Zahlungseingang
    Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
    Rücknahme:
    Keine Rücknahme.
    Zahlungen:
         Diners Club

    Sicher einkaufen

    eBay-Käuferschutz
    Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
    Der Verkäufer ist für dieses Angebot verantwortlich.
    eBay-Artikelnr.:226751489968

    Artikelmerkmale

    Artikelzustand
    Neuwertig: Buch, das wie neu aussieht, aber bereits gelesen wurde. Der Einband weist keine ...
    Book Title
    Generalized Linear Models With Examples in R
    Publish Year
    2018
    Edition
    1
    ISBN
    9781441901170
    Kategorie

    Über dieses Produkt

    Product Identifiers

    Publisher
    Springer New York
    ISBN-10
    1441901175
    ISBN-13
    9781441901170
    eBay Product ID (ePID)
    28038840005

    Product Key Features

    Number of Pages
    Xx, 562 Pages
    Language
    English
    Publication Name
    Generalized Linear Models with Examples in R
    Subject
    Programming Languages / General, Mathematical & Statistical Software, Probability & Statistics / General, General
    Publication Year
    2018
    Type
    Textbook
    Author
    Gordon K. Smyth, Peter K. Dunn
    Subject Area
    Mathematics, Computers
    Series
    Springer Texts in Statistics Ser.
    Format
    Hardcover

    Dimensions

    Item Weight
    36.4 Oz
    Item Length
    9.3 in
    Item Width
    6.1 in

    Additional Product Features

    Reviews
    "This is a great book ... . The book comprehensively covers almost everything you need to know or teach in this area. This book is an invaluable reference either as a classroom text or for the researcher's bookshelf." (Pablo Emilio Verde, ISCB News, iscb.info, Issue 69, July, 2020) "I congratulate the authors for making an important contribution in this field. ... the book represents an excellent and very comprehensible introduction into the world of generalized linear models and is recommended for all readers who are looking for a practical introduction to this topic using R." (Dominic Edelmann, Biometrical Journal, Vol. 62, 2020) "The book is targeted at students and notes it is appropriate for graduate students. It is also useful to the junior statistician needing to learn how to work a model they are unfamiliar with. The practicing and experienced statistician can use this as a quick reference for working a model they may have forgotten the specific of." (James P. Howard II, zbMath 1416.62020, 2019), "I congratulate the authors for making an important contribution in this field. ... the book represents an excellent and very comprehensible introduction into the world of generalized linear models and is recommended for all readers who are looking for a practical introduction to this topic using R." (Dominic Edelmann, Biometrical Journal, Vol. 62, 2020) "The book is targeted at students and notes it is appropriate for graduate students. It is also useful to the junior statistician needing to learn how to work a model they are unfamiliar with. The practicing and experienced statistician can use this as a quick reference for working a model they may have forgotten the specific of." (James P. Howard II, zbMath 1416.62020, 2019), "The book is targeted at students and notes it is appropriate for graduate students. It is also useful to the junior statistician needing to learn how to work a model they are unfamiliar with. The practicing and experienced statistician can use this as a quick reference for working a model they may have forgotten the specific of." (James P. Howard II, zbMath 1416.62020, 2019)
    Number of Volumes
    1 vol.
    Illustrated
    Yes
    Table Of Content
    Statistical models.- Linear regression models.- Linear regression models: diagnostics and model-building.- Beyond linear regression: the method of maximum likelihood.- Generalized linear models: structure.- Generalized linear models: estimation.- Generalized linear models: inference.- Generalized linear models: diagnostics.- Models for proportions: binomial GLMs.- Models for counts: Poisson and negative binomial GLMs.- Positive continuous data: gamma and inverse Gaussian GLMs.- Tweedie GLMs.- Extra problems.- Appendix A: Using R for data analysis.- Appendix B: The GLMsData package.- Index: Data sets.- Index: R commands.- Index: General Topics.
    Synopsis
    This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities. The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text. Other features include: - Advanced topics such as power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, small-dispersion asymptotics, and randomized quantile residuals - Nearly 100 data sets in the companion R package GLMsData - Examples that are cross-referenced to the companion data set, allowing readers to load the data and follow the analysis in their own R session, Designed with teaching and learning in mind, this text eases readers into GLMs, beginning with regression. Its accessible content includes chapter summaries, exercises, short answers, clear examples, samples of R code, and the minimum necessary theory., *This book eases students into GLMs and motivates the need for GLMs by starting with regression.* A practical working knowledge of good applied statistical practice is developed through the use of these real data sets and numerous case studies*. Each example in the text is cross-referenced with the relevant data set so that readers can load this data to follow the analysis in their own R session., This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities. The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text. Other features include: * Advanced topics such as power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, small-dispersion asymptotics, and randomized quantile residuals * Nearly 100 data sets in the companion R package GLMsData * Examples that are cross-referenced to the companion data set, allowing readers to load the data and follow the analysis in their own R session
    LC Classification Number
    QA276-280

    Artikelbeschreibung des Verkäufers

    Info zu diesem Verkäufer

    Klinger's Treasure Chest

    100% positive Bewertungen3.7 Tsd. Artikel verkauft

    Mitglied seit Mai 2008
    Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
    Shop besuchenKontakt

    Detaillierte Verkäuferbewertungen

    Durchschnitt in den letzten 12 Monaten
    Genaue Beschreibung
    5.0
    Angemessene Versandkosten
    4.8
    Lieferzeit
    5.0
    Kommunikation
    5.0

    Verkäuferbewertungen (1'243)

    Alle Bewertungen
    Positiv
    Neutral
    Negativ