GALOIS MODULE STRUCTURE (FIELDS INSTITUTE MONOGRAPHS) By Victor P. Snaith *VG+*

Excellent Condition! Quick & Free Delivery in 2-14 days
ZUBER
(282489)
Angemeldet als gewerblicher Verkäufer
US $49,49
Ca.CHF 39,38
Artikelzustand:
Sehr gut
Book is in Very Good Condition.  Text will be unmarked.  May show some signs of use or wear. Will ... Mehr erfahrenÜber den Artikelzustand
Ganz entspannt. Kostenloser Versand & Rückversand.
Versand:
Kostenlos Economy Shipping.
Standort: US, USA
Lieferung:
Lieferung zwischen Do, 30. Okt und Mo, 3. Nov nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Verkäufer zahlt Rückversand.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:226943409126

Artikelmerkmale

Artikelzustand
Sehr gut
Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand befindet. Der Einband weist keine offensichtlichen Beschädigungen auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers. Alle Zustandsdefinitionen ansehenwird in neuem Fenster oder Tab geöffnet
Hinweise des Verkäufers
“Book is in Very Good Condition.  Text will be unmarked.  May show some signs of use or wear. Will ...
ISBN-10
082180264X
Book Title
Galois Module Structure (Fields Institute Monographs)
ISBN
9780821802649
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
American Mathematical Society
ISBN-10
082180264X
ISBN-13
9780821802649
eBay Product ID (ePID)
8038826351

Product Key Features

Number of Pages
207 Pages
Language
English
Publication Name
Galois Module Structure
Publication Year
1994
Subject
Algebra / General
Type
Textbook
Subject Area
Mathematics
Author
American Mathem American Mathem
Series
Fields Institute Monographs
Format
Hardcover

Dimensions

Item Height
0.6 in
Item Weight
19.6 Oz
Item Length
9.8 in
Item Width
5.9 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
94-031144
Dewey Edition
20
Series Volume Number
2
Illustrated
Yes
Dewey Decimal
512/.74
Table Of Content
Basic preliminaries; Class-groups; Logarithmic techniques; The tame case; Maximal orders; Quaternionic examples; Higher algebraic $K$-theory; Index; Bibliography.
Synopsis
Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group $G$. Typically these invariants lie in the class-group of some group-ring of $G$ or of a related order. These class-groups have 'Hom-descriptions' in terms of idelic-valued functions on the complex representations of $G$. Following a theme pioneered by A. Frolich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, and M. J. Taylor proved the conjecture in this case.The first published graduate course on the Chinburg conjectures, this book provides the necessary background in algebraic and analytic number theory, cohomology, representation theory, and Hom-descriptions. The computation of Hom-descriptions is facilitated by Snaith's Explicit Brauer Induction technique in representation theory. In this way, illustrative special cases of the main results and new examples of the conjectures are proved and amplified by numerous exercises and research problems. The final chapter introduces a new invariant constructed from algebraic $K$-theory, whose Hom-description is related to the $L$-function value at $s = -1$., Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group $G$. Typically these invariants lie in the class-group of some group-ring of $G$ or of a related order. These class-groups have ''Hom-descriptions'' in terms of id\'elic-valued functions on the complex representations of $G$. Following a theme pioneered by A. Frölich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, and M. J. Taylor proved the conjecture in this case. The first published graduate course on the Chinburg conjectures, this book provides the necessary background in algebraic and analytic number theory, cohomology, representation theory, and Hom-descriptions. The computation of Hom-descriptions is facilitated by Snaith's Explicit Brauer Induction technique in representation theory. In this way, illustrative special cases of the main results and new examples of the conjectures are proved and amplified by numerous exercises and research problems. The final chapter introduces a new invariant constructed from algebraic $K$-theory, whose Hom-description is related to the $L$-function value at $s = -1$., Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group $G$. This title addresses the Chinburg conjectures. It provides the background in algebraic and analytic number theory, cohomology, representation theory, and Hom-descriptions., Galois module structure deals with the construction of algebraic invariants from a Galois extension of number fields with group $G$. Typically these invariants lie in the class-group of some group-ring of $G$ or of a related order. These class-groups have Hom-descriptions in terms of idelic-valued functions on the complex representations of $G$. Following a theme pioneered by A. Frolich, T. Chinburg constructed several invariants whose Hom-descriptions are (conjecturally) given in terms of Artin root numbers. For a tame extension, the second Chinburg invariant is given by the ring of integers, and M. J. Taylor proved the conjecture in this case. A graduate course on the Chinburg conjectures, this book provides the necessary background in algebraic and analytic number theory, cohomology, representation theory, and Hom-descriptions. The computation of Hom-descriptions is facilitated by Snaith's Explicit Brauer Induction technique in representation theory. In this way, illustrative special cases of the main results and new examples of the conjectures are proved and amplified by numerous exercises and research problems., The Library of Explorers and Exploration Primary sources make these fascinating books unique. The titles in this visually stunning new biography series will provide middle school readers with an understanding of each explorer's life and achievements. Primary source documents such as journal entries, maps, and letters supplement engaging and detailed prose to explain the voyages and the impact they had on society and history. This series supports the social studies curriculum for: European exploration of the Americas; People, places and environment Samuel De Champlain - While many European explorers headed south in search of gold and spices, Samuel de Champlain spent his life in North America. He founded the first French colony at Quebec, traded with and fought with and against the local Native American tribes. He also mapped unknown territories such as Lake Huron and the lake in Vermont that bears his name, Lake Champlain.
LC Classification Number
QA247.S597 1994

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

ZUBER

98,3% positive Bewertungen988 Tsd. Artikel verkauft

Mitglied seit Okt 1998
Angemeldet als gewerblicher Verkäufer
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.8
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
4.9

Beliebte Kategorien in diesem Shop

Verkäuferbewertungen (311'532)

Alle Bewertungenselected
Positiv
Neutral
Negativ
  • 1***0 (1562)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    AS SHOWN/DESCRIBED. IT IS A GREAT BOOK WITH COLORED INSTRUCTIONS WITHIN. I ONLY SUGGEST THAT ALL SELLERS OF BOOKS WOULD SHOW 2-3 PHOTOS OF ITS CONTENTS. IN DOING SO IT MAY HELP WITH ANY QUESTIONS BUYERS MIGHT HAVE. SECURED PKG, SUPER FAST FREE SHIPPING, SUPER FAST DELIVERY. BOUGHT ITEM, IMMEDIATELY PAID FOR IT, WAS SHIPPED AND DELIVERED WITHIN 24 HOURS VIA AMAZON! I COULD NOT BE HAPPIER. AND I HIGHLY RECOMMEND THIS OUTSTANDING SELLER! THANK YOU FOR EVERYTHING!
  • 8***g (253)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    A smooth and professional transaction throughout. The item was exactly as described, clearly listed, and fairly priced. Communication from the seller was prompt, polite, and helpful, with dispatch confirmed quickly. The parcel was securely packaged and arrived in excellent condition, ahead of the expected delivery date. Care was taken at every stage of the process. I would be happy to buy from this seller again—many thanks for a reliable and well-handled sale.
  • 0***t (10)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Item was exactly as described and packaged to protect it. Seller’s pricing was spot on and when I received it, it was in good condition. Seller actually messaged me when they shipped it (I really appreciated that). Overall I’m happy doing business with them!