Bild 1 von 1

Galerie
Bild 1 von 1

Machine Learning verstehen von Shai Shalev-Shwartz , 3. Internationale Ausgabe
US $33,50
Ca.CHF 27,40
Artikelzustand:
Neu
Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte Seiten. Genauere Einzelheiten entnehmen Sie bitte dem Angebot des Verkäufers.
2 verfügbar9 verkauft
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
US $3,99 (ca. CHF 3,26) Economy Shipping.
Standort: Avenel, NJ, USA
Lieferung:
Lieferung zwischen Sa, 5. Jul und Sa, 12. Jul nach 94104 bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:276481388396
Artikelmerkmale
- Artikelzustand
- Contents
- Same as US Edition
- Language:
- English
- International-ISBN
- 9781107512825
- Packaging
- Shrinkwrapped Book - Box Packed
- Features
- International Edition
- Cover-Design
- May Differ from Original Picture
- Shipping
- FAST 3 to 5 Business Day Service on Expedited Opt.
- Product-Type
- INTERNATIONAL PAPERBACK EDITION
- ISBN
- 9781107057135
Über dieses Produkt
Product Identifiers
Publisher
Cambridge University Press
ISBN-10
1107057132
ISBN-13
9781107057135
eBay Product ID (ePID)
171820749
Product Key Features
Number of Pages
410 Pages
Language
English
Publication Name
Understanding Machine Learning : from Theory to Algorithms
Subject
Algebra / General, Computer Vision & Pattern Recognition
Publication Year
2014
Type
Textbook
Subject Area
Mathematics, Computers
Format
Hardcover
Dimensions
Item Height
1.1 in
Item Weight
32.2 Oz
Item Length
10.2 in
Item Width
7.2 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2014-001779
Dewey Edition
23
Reviews
Advance praise: 'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Schölkopf, Max Planck Institute for Intelligent Systems, "This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data." Bernhard Schlkopf, Max Planck Institute for Intelligent Systems
Illustrated
Yes
Dewey Decimal
006.3/1
Table Of Content
1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity trade-off; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
Synopsis
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering., Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering., Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the 'hows' and 'whys' of machine-learning algorithms, making the field accessible to both students and practitioners.
LC Classification Number
Q325.5 .S475 2014
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
TextbooksXpress
98,6% positive Bewertungen•31 Tsd. Artikel verkauft
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Verkäuferbewertungen (4'080)
- a***r (14)- Bewertung vom Käufer.Letzter MonatBestätigter KaufPERFECT!! TYYY
- p***e (1090)- Bewertung vom Käufer.Letzter MonatBestätigter KaufAt first, I was worried because the box came with a large dent in the side, but upon opening it, I found that the books themselves had been packaged very securely and were all perfectly fine! A very welcome surprise for coming on such a long trip from India. Thank you!
- s***h (100)- Bewertung vom Käufer.Letzter MonatBestätigter KaufThank you
Noch mehr entdecken:
- Internationale Politikbücher,
- Bücher über internationale Politik Sachbuch,
- Bücher über internationales Recht Sachbuch,
- Bücher über internationale Küche Sachbuch,
- Bücher über internationale Beziehungen Sachbuch,
- Hörbücher und Hörspiele Action Europa Editions,
- Europa-Editions-Erwachsene Hörbücher und Hörspiele,
- Hörbücher und Hörspiele Europa Editions Kassette,
- Hörbücher und Hörspiele Europa Editions Kassette,
- Hörbücher und Hörspiele Europa Editions Action