Designing Social Inquiry King/Keohane/Verba

chuy_1221985
(172)
Angemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $13,00
Ca.CHF 10,39
oder Preisvorschlag
Artikelzustand:
Gut
Versand:
Kostenlos USPS Media MailTM.
Standort: Burleson, Texas, USA
Lieferung:
Lieferung zwischen Sa, 18. Okt und Fr, 24. Okt nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
Keine Rücknahme.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:284200693367
Zuletzt aktualisiert am 28. Aug. 2021 01:57:44 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Gut: Buch, das gelesen wurde, sich aber in einem guten Zustand befindet. Der Einband weist nur sehr ...
Subject
Design
Narrative Type
Nonfiction
ISBN
9780691034713
EAN
9780691034713
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Princeton University Press
ISBN-10
0691034710
ISBN-13
9780691034713
eBay Product ID (ePID)
606260

Product Key Features

Number of Pages
264 Pages
Publication Name
Designing Social Inquiry : Scientific Inference in Qualitative Research
Language
English
Subject
Methodology, Research, Logic
Publication Year
1994
Type
Textbook
Subject Area
Philosophy, Social Science
Author
Gary King, Robert O. Keohane, Sidney Verba
Format
Trade Paperback

Dimensions

Item Height
0.6 in
Item Weight
13 Oz
Item Length
9.3 in
Item Width
6.3 in

Additional Product Features

Intended Audience
College Audience
LCCN
93-039283
Reviews
The book is marked by a very careful building up of all concepts; by clear, vivid writing; and by an excellent use of extended examples from the work of such scholars as Nina Halpern, Atul Kohli, and David Laiting., "The book is marked by a very careful building up of all concepts; by clear, vivid writing; and by an excellent use of extended examples from the work of such scholars as Nina Halpern, Atul Kohli, and David Laiting." -- Journal of Politics, The book is marked by a very careful building up of all concepts; by clear, vivid writing; and by an excellent use of extended examples from the work of such scholars as Nina Halpern, Atul Kohli, and David Laiting. -- Journal of Politics, "The book is marked by a very careful building up of all concepts; by clear, vivid writing; and by an excellent use of extended examples from the work of such scholars as Nina Halpern, Atul Kohli, and David Laiting."-- Journal of Politics
Dewey Edition
20
Illustrated
Yes
Dewey Decimal
300/.72
Table Of Content
Preface ix1 The Science in Social Science 3 1.1 Introduction 3 1.1.1 Two Styles of Research, One Logic of Inference 3 1.1.2 Defining Scientific Research in Social Sciences 7 1.1.3 Science and Complexity 9 1.2 Major Components of Research Design 12 1.2.1 Improving Research Questions 14 1.2.2 Improving Theory 19 1.2.3 Improving Data Quality 23 1.2.4 Improving the Use of Existing Data 27 1.3 Themes of This Volume 28 1.3.1 Using Observable Implications to Connect Theory and Data 28 1.3.2 Maximizing Leverage 29 1.3.3 Reporting Uncertainty 31 1.3.4 Thinking like a Social Scientist: Skepticism and Rival Hypotheses 322 Descriptive Inference 34 2.1 General Knowledge and Particular Facts 35 2.1.1 "Interpretation" and Inference 36 2.1.2 "Uniqueness," Complexity, and Simplification 42 2.1.3 Comparative Case Studies 43 2.2 Inference: the Scientific Purpose of Data Collection 46 2.3 Formal Models of Qualitative Research 49 2.4 A Formal Model of Data Collection 51 2.5 Summarizing Historical Detail 53 2.6 Descriptive Inference 55 2.7 Criteria for Judging Descriptive Inferences 63 2.7.1 Unbiased Inferences 63 2.7.2 Efficiency 663 Causality and Causal Inference 75 3.1 Defining Causality 76 3.1.1 The Definition and a Quantitative Example 76 3.1.2 A Qualitative Example 82 3.2 Clarifying Alternative Definitions of Causality 85 3.2.1 "Causal Mechanisms" 85 3.2.2 "Multiple Causality" 87 3.2.3 "Symmetric" and "Asymmetric" Causality 89 3.3 Assumptions Required for Estimating Causal Effects 91 3.3.1 Unit Homogeneity 91 3.3.2 Conditional Independence 94 3.4 Criteria for Judging Causal Inferences 97 3.5 Rules for Constructing Causal Theories 99 3.5.1 Rule 1: Construct Falsifiable Theories 100 3.5.2 Rule 2: Build Theories That Are Internally Consistent 105 3.5.3 Rule 3: Select Dependent Variables Carefully 107 3.5.4 Rule 4: Maximize Concreteness 109 3.5.5 Rule 5: State Theories in as Encompassing Ways as Feasible 1134 Determining What to Observe 115 4.1 Indeterminate Research Designs 118 4.1.1 More Inferences than Observations 119 4.1.2 Multicollinearity 122 4.2 The Limits of Random Selection 124 4.3 Selection Bias 128 4.3.1 Selection on the Dependent Variable 129 4.3.2 Selection on an Explanatory Variable 137 4.3.3 Other Types of Selection Bias 138 4.4 Intentional Selection of Observations 139 4.4.1 Selecting Observations on the Explanatory Variable 140 4.4.2 Selecting a Range of Values of the Dependent Variable 141 4.4.3 Selecting Observations on Both Explanatory and Dependent Variables 142 4.4.4 Selecting Observations So the Key Causal Variable Is Constant 146 4.4.5 Selecting Observations So the Dependent Variable Is Constant 147 4.5 Concluding Remarks 1495 Understanding What to Avoid 150 5.1 Measurement Error 151 5.1.1 Systematic Measurement Error 155 5.1.2 Nonsystematic Measurement Error 157 5.2 Excluding Relevant Variables: Bias 168 5.2.1 Gauging the Bias from Omitted Variables 168 5.2.2 Examples of Omitted Variable Bias 176 5.3 Including Irrelevant Variables: Inefficiency 182 5.4 Endogeneity 185 5.4.1 Correcting Biased Inferences 187 5.4.2 Parsing the Dependent Variable 188 5.4.3 Transforming Endogeneity into an Omitted Variable Problem 189 5.4.4 Selecting Observations to Avoid Endogeneity 191 5.4.5 Parsing the Explanatory Variable 193 5.5 Assigning Values of the Explanatory Variable 196 5.6 Controlling the Research Situation 199 5.7 Concluding Remarks 2066 Increasing the Number of Observations 208 6.1 Single-Observation Designs for Causal Inference 209 6.1.1 "Crucial" Case Studies 209 6.1.2 Reasoning by Analogy 212 6.2 How Many Observations Are Enough? 213 6.3 Making Many Observations from Few 217 6.3.1 Same Measures, New Units 219 6.3.2 Same Units, New Measures 223 6.3.3 New Measures, Ne
Synopsis
While heated arguments between practitioners of qualitative and quantitative research have begun to test the very integrity of the social sciences, this monograph outlines a unified approach to valid descriptive and causal inference in qualitative research, where numerical measurement is either impossible or undesirable. The book demonstrates that the same logic of inference underlies both good quantitative and qualitative research designs. Providing precepts intended to stimulate and discipline thought, the authors explore issues related to framing research questions, measuring the accuracy of data and the uncertainty of empirical inferences, discovering causal effects and generally improving qualitative research. Among the specific topics addressed are interpretation and inference, comparative case studies, the construction of causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. Mathematical notation is occasionally used to clarify concepts, but no prior knowledge of mathematics or statistics is assumed.The unified logic of inference that this book explicates should be useful to qualitative researchers i, Providing precepts intended to stimulate and discipline thought, this book explores issues related to framing research questions, measuring the accuracy of data and uncertainty of empirical inferences, discovering causal effects, and generally improving qualitative research., While heated arguments between practitioners of qualitative and quantitative research have begun to test the very integrity of the social sciences, Gary King, Robert Keohane, and Sidney Verba have produced a farsighted and timely book that promises to sharpen and strengthen a wide range of research performed in this field. These leading scholars, each representing diverse academic traditions, have developed a unified approach to valid descriptive and causal inference in qualitative research, where numerical measurement is either impossible or undesirable. Their book demonstrates that the same logic of inference underlies both good quantitative and good qualitative research designs, and their approach applies equally to each. Providing precepts intended to stimulate and discipline thought, the authors explore issues related to framing research questions, measuring the accuracy of data and uncertainty of empirical inferences, discovering causal effects, and generally improving qualitative research. Among the specific topics they address are interpretation and inference, comparative case studies, constructing causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. Mathematical notation is occasionally used to clarify concepts, but no prior knowledge of mathematics or statistics is assumed. The unified logic of inference that this book explicates will be enormously useful to qualitative researchers of all traditions and substantive fields.
LC Classification Number
H61.K5437 1994

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

chuy_1221985

100% positive Bewertungen24 Artikel verkauft

Mitglied seit Feb 2015
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.

Verkäuferbewertungen (8)

Alle Bewertungenselected
Positiv
Neutral
Negativ
  • f***m (218)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Quick shipping! Item as described! Perfect!
  • Automatische Bewertung von eBay- Bewertung vom Käufer.
    Letztes Jahr
    Der Verkäufer hat die Bestellung erfolgreich durchgeführt.
  • i***5 (89)- Bewertung vom Käufer.
    Vor über einem Jahr
    Bestätigter Kauf
    This was not a tea set. This was strictly for coffee /espresso. Not what I wanted and not advertised as such. Scratched and dented as seller didn’t properly package item. Box was damaged and so were 5 out of 6 cups. Top of coffee pot dented and bent. Cannot use.