Bild 1 von 1

Galerie
Bild 1 von 1

Ähnlichen Artikel verkaufen?
Maschinelles Lernen für Faktorinvestit ionen: Python-Version von Guillaume Coqueret: Neu
US $100,97
Ca.CHF 80,86
Artikelzustand:
Neu
Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte Seiten. Genauere Einzelheiten entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos Standard Shipping.
Standort: Sparks, Nevada, USA
Lieferung:
Lieferung zwischen Mo, 21. Jul und Fr, 25. Jul nach 94104 bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:285401947281
Artikelmerkmale
- Artikelzustand
- Book Title
- Machine Learning for Factor Investing: Python Version
- Publication Date
- 2023-08-08
- Pages
- 340
- ISBN
- 9780367639723
Über dieses Produkt
Product Identifiers
Publisher
CRC Press LLC
ISBN-10
0367639726
ISBN-13
9780367639723
eBay Product ID (ePID)
9059332715
Product Key Features
Number of Pages
340 Pages
Publication Name
Machine Learning for Factor Investing : Python Version
Language
English
Subject
Probability & Statistics / General, Finance / General, General
Publication Year
2023
Type
Textbook
Subject Area
Mathematics, Business & Economics
Series
Chapman and Hall/Crc Financial Mathematics Ser.
Format
Trade Paperback
Dimensions
Item Length
10 in
Item Width
7 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2023-002044
Dewey Edition
23
Reviews
"Machine learning is considered promising for investment management applications, yet the associated low signal to noise ratio presents a high bar for improving on the incumbent quant asset management tooling. The book of Coqueret and Guida is a treat for those who do not want to lose sight of the machine learning forest for the trees. Whether you are an academic scholar or a finance practitioner, you will learn just what you need to rigorously investigate machine learning techniques for factor investing applications, along with plenty of useful code snippets." -Harald Lohre, Executive Director of Research at Robeco and Honorary Researcher at Lancaster University Management School "Written by two experts on quantitative finance, this book covers everything from basic materials to advanced techniques in the field of quantitative investment strategies: data processing, alpha signal generation, portfolio optimization, backtesting and performance evaluation. Concrete examples related to asset management problems illustrate each machine learning technique, such as neural network, lasso regression, autoencoder or reinforcement learning. With more than 20 coding exercises and solutions provided in Python, this publication is a must for both students, academics and professionals who are looking for an up-to-date technical exposition on quantitative asset management from basic smart beta portfolios to enhanced alpha strategies including factor investing." -Thierry Roncalli, Head of Quantitative Portfolio Strategy at Amundi Institute, Amundi Asset Management
Illustrated
Yes
Dewey Decimal
332.60285631
Table Of Content
Part 1. Introduction 1. Notations and data 2. Introduction 3. Factor investing and asset pricing anomalies 4. Data preprocessing Part 2. Common supervised algorithms 5. Penalized regressions and sparse hedging for minimum variance portfolios 6. Tree-based methods 7. Neural networks 8. Support vector machines 9. Bayesian methods Part 3. From predictions to portfolios 10. Validating and tuning 11. Ensemble models 12. Portfolio backtesting Part 4. Further important topics 13. Interpretability 14. Two key concepts: causality and non-stationarity 15. Unsupervised learning 16. Reinforcement learning Part 5. Appendix 17. Data description 18. Solutions to exercises
Synopsis
Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics. The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models. All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise., Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection.
LC Classification Number
HG4515.5.C66 2023
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
AlibrisBooks
98,6% positive Bewertungen•1.9 Mio. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Verkäuferbewertungen (511'585)
- n***n (1202)- Bewertung vom Käufer.Letzter MonatBestätigter KaufThank you.
- m***d (336)- Bewertung vom Käufer.Letzter MonatBestätigter KaufI am happy with the order from start to finish
- v***j (85)- Bewertung vom Käufer.Letzter MonatBestätigter KaufGreat communication and fast shipping, good description of item