Bild 1 von 2

Galerie
Bild 1 von 2


Ähnlichen Artikel verkaufen?
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Conce - GOOD
CraCraMerch
(9390)
Gewerblich
US $25,00
Ca.CHF 20,12
Artikelzustand:
“Spine is Tight has NO creases! Pages and cover are clean and intact. Shows little signs of shelf ”... Mehr erfahrenÜber den Artikelzustand
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos Standard Shipping.
Standort: Cypress, Texas, USA
Lieferung:
Lieferung zwischen Mi, 10. Dez und Sa, 13. Dez nach 94104 bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Info zum Artikel
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:286663623498
Artikelmerkmale
- Artikelzustand
- Gut
- Hinweise des Verkäufers
- Brand
- Unbranded
- MPN
- Does not apply
- ISBN
- 9781492032649
Über dieses Produkt
Product Identifiers
Publisher
O'reilly Media, Incorporated
ISBN-10
1492032646
ISBN-13
9781492032649
eBay Product ID (ePID)
8038668355
Product Key Features
Number of Pages
848 Pages
Language
English
Publication Name
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems
Subject
Intelligence (Ai) & Semantics, General, Data Processing, Computer Vision & Pattern Recognition
Publication Year
2019
Type
Textbook
Subject Area
Mathematics, Computers
Format
Trade Paperback
Dimensions
Item Height
1.4 in
Item Weight
43.2 Oz
Item Length
9.4 in
Item Width
7 in
Additional Product Features
Edition Number
2
Intended Audience
Trade
LCCN
2020-304725
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks'??Scikit-Learn and TensorFlow'??author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'??ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you'??ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets, Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--Scikit-Learn and TensorFlow--author Aur lien G ron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets, Now fully updated, this bestselling book uses concrete examples, minimal theory, and two production-ready Python frameworks--Scikit-Learn and TensorFlow 2--to help users gain an intuitive understanding of the concepts and tools for building intelligent systems.t systems.
LC Classification Number
QA76.73.P98G45 2019
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
CraCraMerch
99% positive Bewertungen•29 Tsd. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Verkäuferbewertungen (10'478)
- y***g (434)- Bewertung vom Käufer.Letzter MonatBestätigter KaufExtremely beautiful vintage rc truck exactly as described. Body super realistic to a Hilux. Priced great considering it’s a new vintage rc. Packaged really well to ensure nothing was damaged or scratched while in transit. Shipping was super fast. Couldn’t be happier. Awesome seller!
- *****- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufA+ seller! The product arrived in absolutely perfect condition, carefully packaged to ensure its safety during transit, and matched the description exactly. The seller provided fast shipping, excellent communication, and top-tier customer service. It’s clear they take pride in offering a smooth and trustworthy shopping experience. I couldn’t be happier with my purchase and would gladly buy from them again in the future—highly recommend!
- *****- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufSeller packaged card nicely, but the package was folded in half during its USPS adventure. When I reached out to the seller, he responded immediately and issued me a refund without all of the running around. I will do business with this seller again and would highly recommend you do to. He is very fair and professional. No games played here.
Dies ist ein Angebot mit nicht öffentlicher Bieter-/Käuferliste. Nur der Verkäufer kann Ihren Nutzernamen sehen.

