|Eingestellt in Kategorie:
Der Verkäufer ist abwesend bis 21. Jul. 2025. Behalten Sie den Artikel im Auge - setzen Sie ihn auf Ihre Beobachtungsliste.
Ähnlichen Artikel verkaufen?

ALGEBRAISCHE ZAHLENTHEORIE UND FERMATS LETZTER SATZ, VIERTER von Ian Stewart & David

AMA - BOOKS
(4279)
Angemeldet als gewerblicher Verkäufer
US $14,01
Ca.CHF 11,22
Artikelzustand:
Gut
Satisfaction Guaranteed! 100% Money Back Guarantee.Book is in typical used-Good Condition. Will show ... Mehr erfahrenÜber den Artikelzustand
Ganz entspannt. Kostenloser Rückversand.
Versand:
US $3,97 (ca. CHF 3,18) USPS Media MailTM.
Standort: Multiple Locations, USA
Lieferung:
Lieferung zwischen Do, 24. Jul und Mi, 30. Jul nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Verkäufer zahlt Rückversand.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:286678131814
Zuletzt aktualisiert am 11. Jul. 2025 23:30:30 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Gut
Buch, das gelesen wurde, sich aber in einem guten Zustand befindet. Der Einband weist nur sehr geringfügige Beschädigungen auf, wie z.B. kleinere Schrammen, er hat aber weder Löcher, noch ist er eingerissen. Bei gebundenen Büchern ist der Schutzumschlag möglicherweise nicht mehr vorhanden. Die Bindung weist geringfügige Gebrauchsspuren auf. Die Mehrzahl der Seiten ist unbeschädigt, das heißt, es gibt kaum Knitter oder Einrisse, es wurden nur in geringem Maße Bleistiftunterstreichungen im Text vorgenommen, es gibt keine Textmarkierungen und die Randbereiche sind nicht beschrieben. Alle Seiten sind vollständig vorhanden. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers. Alle Zustandsdefinitionen ansehenwird in neuem Fenster oder Tab geöffnet
Hinweise des Verkäufers
“Satisfaction Guaranteed! 100% Money Back Guarantee.Book is in typical used-Good Condition. Will ...
ISBN-10
1498738397
Book Title
Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition
ISBN
9781498738392

Über dieses Produkt

Product Identifiers

Publisher
CRC Press LLC
ISBN-10
1498738397
ISBN-13
9781498738392
eBay Product ID (ePID)
216002123

Product Key Features

Number of Pages
322 Pages
Language
English
Publication Name
Algebraic Number Theory and Fermat's Last Theorem
Subject
General, Number Theory, Combinatorics
Publication Year
2015
Type
Textbook
Author
Ian Stewart, David Tall
Subject Area
Mathematics
Format
Hardcover

Dimensions

Item Height
0.9 in
Item Weight
20.8 Oz
Item Length
9.3 in
Item Width
6.3 in

Additional Product Features

Edition Number
4
Intended Audience
College Audience
LCCN
2015-023199
Dewey Edition
23
Reviews
Praise for Previous Editions "The book remains, as before, an extremely attractive introduction to algebraic number theory from the ideal-theoretic perspective." --Andrew Bremner, Mathematical Reviews, February 2003
Illustrated
Yes
Dewey Decimal
512.7/4
Edition Description
Revised edition,New Edition
Table Of Content
Algebraic Methods Algebraic Background Rings and Fields Factorization of Polynomials Field Extensions Symmetric Polynomials Modules Free Abelian Groups Algebraic Numbers Algebraic Numbers Conjugates and Discriminants Algebraic Integers Integral Bases Norms and Traces Rings of Integers Quadratic and Cyclotomic Fields Quadratic Fields Cyclotomic Fields Factorization into Irreducibles Historical Background Trivial Factorizations Factorization into Irreducibles Examples of Non-Unique Factorization into Irreducibles Prime Factorization Euclidean Domains Euclidean Quadratic Fields Consequences of Unique Factorization The Ramanujan-Nagell Theorem Ideals Historical Background Prime Factorization of Ideals The Norm of an Ideal Nonunique Factorization in Cyclotomic Fields Geometric Methods Lattices Lattices The Quotient Torus Minkowski's Theorem Minkowski's Theorem The Two-Squares Theorem The Four-Squares Theorem Geometric Representation of Algebraic Numbers The Space L st Class-Group and Class-Number The Class-Group An Existence Theorem Finiteness of the Class-Group How to Make an Ideal Principal Unique Factorization of Elements in an Extension Ring Number-Theoretic Applications Computational Methods Factorization of a Rational Prime Minkowski Constants Some Class-Number Calculations Table of Class-Numbers Kummer's Special Case of Fermat's Last Theorem Some History Elementary Considerations Kummer's Lemma Kummer's Theorem Regular Primes The Path to the Final Breakthrough The Wolfskehl Prize Other Directions Modular Functions and Elliptic Curves The Taniyama-Shimura-Weil Conjecture Frey's Elliptic Equation The Amateur Who Became a Model Professional Technical Hitch Flash of Inspiration Elliptic Curves Review of Conics Projective Space Rational Conics and the Pythagorean Equation Elliptic Curves The Tangent/Secant Process Group Structure on an Elliptic Curve Applications to Diophantine Equations Elliptic Functions Trigonometry Meets Diophantus Elliptic Functions Legendre and Weierstrass Modular Functions Wiles's Strategy and Recent Developments The Frey Elliptic Curve The Taniyama-Shimura-Weil Conjecture Sketch Proof of Fermat's Last Theorem Recent Developments Appendices Quadratic Residues Quadratic Equations in Z m The Units of Z m Quadratic Residues Dirichlet's Units Theorem Introduction Logarithmic Space Embedding the Unit Group in Logarithmic Space Dirichlet's Theorem Bibliography Index Exercises appear at the end of each chapter.
Synopsis
Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(√14) is Euclidean Presents an important new result: Mihailescu's proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory., Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics-the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(14) is Euclidean Presents an important new result: Mihailescu's proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory., First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a fourth edition. It reflects the exciting developments in number theory during the past decades that culminated in the proof of Fermat's Last Theorem. An historical introduction and new material on the Catalan conjecture will be included. Intended as an upper level textbook, it is also eminently suited as a text for self-study., Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z(14) is Euclidean Presents an important new result: Mihailescu's proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
LC Classification Number
QA247.S76 2016

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

AMA - BOOKS

96,9% positive Bewertungen28 Tsd. Artikel verkauft

Mitglied seit Jul 2018
Angemeldet als gewerblicher Verkäufer
"AMA BOOKS specializes in offering high-quality used books with fast shipping and a strong commitment to customer satisfaction. Thank you for visiting our eBay store!"
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.7
Angemessene Versandkosten
4.8
Lieferzeit
4.9
Kommunikation
4.8

Verkäuferbewertungen (4'703)

Alle Bewertungen
Positiv
Neutral
Negativ