Wiley Series in Probability and Statistics Ser.: Handbook of Monte Carlo Methods

RandomStuff1978
(10696)
PrivatAngemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $99,95
Ca.CHF 80,36
oder Preisvorschlag
Artikelzustand:
Sehr gut
Das interessiert die Leute. 3 haben das auf ihrer Beobachtungsliste.
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos USPS Media MailTM.
Standort: Farmington, Connecticut, USA
Lieferung:
Lieferung zwischen Do, 4. Dez und Mi, 10. Dez nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
14 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:295961499672

Artikelmerkmale

Artikelzustand
Sehr gut: Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand ...
Subject
Statistics
ISBN
9780470177938
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Wiley & Sons, Incorporated, John
ISBN-10
0470177934
ISBN-13
9780470177938
eBay Product ID (ePID)
102737544

Product Key Features

Number of Pages
772 Pages
Language
English
Publication Name
Handbook of Monte Carlo Methods
Publication Year
2011
Subject
Probability & Statistics / Stochastic Processes, Probability & Statistics / General
Type
Textbook
Author
Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev
Subject Area
Mathematics
Series
Wiley Series in Probability and Statistics Ser.
Format
Hardcover

Dimensions

Item Height
1.7 in
Item Weight
51.6 Oz
Item Length
10 in
Item Width
7 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2010-042348
Reviews
"Statisticians Kroese, Thomas Taimre (both U. of Queensland), and Zdravko I. Botev (U. of Montreal) offer researchers and graduate and advanced graduate students a compendium of Monte Carlo methods, which are statistical methods that involve random experiments on a computer. There are a great many such methods being used for so many kinds of problems in so many fields that such an overall view is hard to find. Combining theory, algorithms, and applications, they consider such topics as uniform random number generation, probability distributions, discrete event simulation, variance reduction, estimating derivatives, and applications to network reliability." (Annotation ©2011 Book News Inc. Portland, OR)
Series Volume Number
706
Illustrated
Yes
Dewey Decimal
518
Synopsis
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB(R), a related Web site houses the MATLAB(R) code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels., A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels., A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today s numerical problems found in engineering and finance are solved through Monte Carlo methods., A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that facilitate a thorough understanding of the emerging dynamics of this rapidly growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, Latin hypercube sampling, and conditional Monte Carlo Estimation or derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi-Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®. A related website houses the MATLAB® code, allowing readers to work hands-on with the material and also features the authors own lecture notes on Monte Carlo methods. Detailed appendices provide background on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that ate relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics as the upper-undergraduate and graduate levels.
LC Classification Number
QA298.K76 2011

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

RandomStuff1978

100% positive Bewertungen23 Tsd. Artikel verkauft

Mitglied seit Nov 2000
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
5.0
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (12'974)

Alle Bewertungenselected
Positiv
Neutral
Negativ