|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

Primzahlen: Die geheimnisvollsten Figuren in Mathematik von Wells, David Hardback The

FREE US DELIVERY | ISBN: 0471462349 | Quality Books
World of Books USA
(1186841)
Angemeldet als gewerblicher Verkäufer
US $23,29
Ca.CHF 18,52
Artikelzustand:
Sehr gut
3 verfügbar2 verkauft
Beliebter Artikel. Schon 2 verkauft.
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos USPS Ground Advantage®.
Standort: Florida, USA
Lieferung:
Lieferung zwischen Di, 5. Aug und Di, 12. Aug nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:303880219637
Zuletzt aktualisiert am 25. Jul. 2025 19:23:06 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Sehr gut: Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand ...
ISBN
0471462349
EAN
9780471462347
Date of Publication
2005-05-18
Release Title
Prime Numbers: The Most Mysterious Figures in Math
Artist
Wells, David
Brand
N/A
Colour
N/A
Book Title
Prime Numbers: The Most Mysterious Figures in Math

Über dieses Produkt

Product Identifiers

Publisher
Wiley & Sons, Incorporated, John
ISBN-10
0471462349
ISBN-13
9780471462347
eBay Product ID (ePID)
43398053

Product Key Features

Number of Pages
272 Pages
Language
English
Publication Name
Prime Numbers : the Most Mysterious Figures in Math
Publication Year
2005
Subject
Number Theory
Type
Textbook
Author
David Wells
Subject Area
Mathematics
Format
Hardcover

Dimensions

Item Height
1 in
Item Weight
17.3 Oz
Item Length
9.2 in
Item Width
6.5 in

Additional Product Features

Intended Audience
Trade
LCCN
2004-019974
Dewey Edition
22
Reviews
"The book is nicely produced and is an easy read..."  ( The Mathematical Gazette , November 2007) 'Compulsory reading for the mathematically minded.'  (Inside OR, March 2012), ""The book is nicely produced and is an easy read..."" (""The Mathematical Gazette"", November 2007)
Illustrated
Yes
Dewey Decimal
512.7/23
Table Of Content
Acknowledgments. Author's Note. Introduction. Entries A to Z. abc conjecture. abundant number. AKS algorithm for primality testing. aliquot sequences (sociable chains). almost-primes. amicable numbers. amicable curiosities. Andrica's conjecture. arithmetic progressions, of primes. Aurifeuillian factorization. average prime. Bang's theorem. Bateman's conjecture. Beal's conjecture, and prize. Benford's law. Bernoulli numbers. Bernoulli number curiosities. Bertrand's postulate. Bonse's inequality. Brier numbers. Brocard's conjecture. Brun's constant. Buss's function. Carmichael numbers. Catalan's conjecture. Catalan's Mersenne conjecture. Champernowne's constant. champion numbers. Chinese remainder theorem. cicadas and prime periods. circle, prime. circular prime. Clay prizes, the. compositorial. concatenation of primes. conjectures. consecutive integer sequence. consecutive numbers. consecutive primes, sums of. Conway's prime-producing machine. cousin primes. Cullen primes. Cunningham project. Cunningham chains. decimals, recurring (periodic). the period of 1/13. cyclic numbers. Artin's conjecture. the repunit connection. magic squares. deficient number. deletable and truncatable primes. Demlo numbers. descriptive primes. Dickson's conjecture. digit properties. Diophantus (c. AD 200; d. 284). Dirichlet's theorem and primes in arithmetic series. primes in polynomials. distributed computing. divisibility tests. divisors (factors). how many divisors? how big is d(n)? record number of divisors. curiosities of d(n). divisors and congruences. the sum of divisors function. the size of ?(n). a recursive formula. divisors and partitions. curiosities of ?(n). prime factors. divisor curiosities. economical numbers. Electronic Frontier Foundation. elliptic curve primality proving. emirp. Eratosthenes of Cyrene, the sieve of. Erdos, Paul (1913-1996). his collaborators and Erdos numbers. errors. Euclid (c. 330-270 BC). unique factorization. &Radic;2 is irrational. Euclid and the infinity of primes. consecutive composite numbers. primes of the form 4n +3. a recursive sequence. Euclid and the first perfect number. Euclidean algorithm. Euler, Leonhard (1707-1783). Euler's convenient numbers. the Basel problem. Euler's constant. Euler and the reciprocals of the primes. Euler's totient (phi) function. Carmichael's totient function conjecture. curiosities of ?(n). Euler's quadratic. the Lucky Numbers of Euler. factorial. factors of factorials. factorial primes. factorial sums. factorials, double, triple . . . . factorization, methods of. factors of particular forms. Fermat's algorithm. Legendre's method. congruences and factorization. how difficult is it to factor large numbers? quantum computation. Feit-Thompson conjecture. Fermat, Pierre de (1607-
Synopsis
A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The ""Primes is in P"" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more, A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd'o's, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The ""Primes is in P"" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more, A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law2s phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you2ll meet the world2s most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd'o's, and you2ll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know-and much more that you never suspected-about prime numbers, including: The unproven Riemann hypothesis and the power of the zeta function The "Primes is in P" algorithm The sieve of Eratosthenes of Cyrene Fermat and Fibonacci numbers The Great Internet Mersenne Prime Search And much, much more, A fascinating look at the maths and mystique of prime numbers. Prime numbers-numbers that are only divisible by one and themselves-have long intrigued mathematicians.
LC Classification Number
QA246.W35 2005

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

USt-IdNr.: GB 922696893
Info zu diesem Verkäufer

World of Books USA

86,5% positive Bewertungen5.2 Mio. Artikel verkauft

Mitglied seit Okt 2011
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
In 2002, World of Books Group was founded on an ethos to do good, protect the planet and support charities by enabling more goods to be reused. Since then, we've grown into to a global company ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.5
Angemessene Versandkosten
5.0
Lieferzeit
4.3
Kommunikation
4.8

Verkäuferbewertungen (1'557'843)

Alle Bewertungen
Positiv
Neutral
Negativ