Bild 1 von 2


Galerie
Bild 1 von 2


Ähnlichen Artikel verkaufen?
Deep Learning (Adaptive Computation a..., Bach, Francis
US $40,99
Ca.CHF 32,43
Artikelzustand:
Sehr gut
Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand befindet. Der Einband weist keine offensichtlichen Beschädigungen auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Mehr als 10 verfügbar
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos USPS Media MailTM.
Standort: Montgomery Illinois, USA
Lieferung:
Lieferung zwischen Sa, 5. Jul und Mi, 9. Jul nach 94104 bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Verkäufer zahlt Rückversand.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:314739226183
Artikelmerkmale
- Artikelzustand
- Book Title
- Deep Learning (Adaptive Computation and Machine Learning Series)
- ISBN
- 0262035618
- EAN
- 9780262035613
- Release Title
- Deep Learning (Adaptive Computation and Machine Learning Series)
- Artist
- Bach, Francis
- Brand
- N/A
- Colour
- N/A
Über dieses Produkt
Product Identifiers
Publisher
MIT Press
ISBN-10
0262035618
ISBN-13
9780262035613
eBay Product ID (ePID)
228981524
Product Key Features
Number of Pages
800 Pages
Publication Name
Deep Learning
Language
English
Subject
Intelligence (Ai) & Semantics, Computer Science
Publication Year
2016
Type
Textbook
Subject Area
Computers
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover
Dimensions
Item Height
1.3 in
Item Weight
45.5 Oz
Item Length
9.3 in
Item Width
7.3 in
Additional Product Features
Intended Audience
Trade
LCCN
2016-022992
Dewey Edition
23
Reviews
[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology., [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-- Daniel D. Gutierrez , insideBIGDATA --
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors., An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
LC Classification Number
Q325.5.G66 2017
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
worldofbooksinc
97,7% positive Bewertungen•1.1 Mio. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Verkäuferbewertungen (267'375)
- r***o (415)- Bewertung vom Käufer.Letzter MonatBestätigter KaufExcellent Seller. Thanks.
- b***u (2134)- Bewertung vom Käufer.Letzter MonatBestätigter KaufGood book.
- a***1 (51)- Bewertung vom Käufer.Letzter MonatBestätigter KaufGood book and value
Noch mehr entdecken:
- Dick Francis Belletristik-Bücher,
- Deutsche Bücher Dick Francis Belletristik,
- Dick Francis Bücher Belletristik im Taschenbuch-Format,
- Robert-A. - Heinlein-Belletristik-Bücher,
- Michael-A. - Singer-Sachbuch Bücher,
- Deutsche Bücher Robert-A. - Heinlein-Belletristik,
- Robert-A. - Heinlein-Taschenbuch-Belletristik-Bücher,
- James-A. - Michener-Belletristik-Bücher,
- Michael-A. - Singer-Taschenbuch-Sachbuch Bücher,
- Michael-A. - Singer-Taschenbuch-Lebensführung-, - Motivation- & - Karriere-Sachbuch Bücher über Selbsthilfe