|Eingestellt in Kategorie:
Dieses Angebot wurde verkauft am Sa, 16. Aug um 06:44.
Markov Chain Monte Carlo (Chapman & Hall/CRC Texts in Statistical Science) by G
Verkauft
Markov Chain Monte Carlo (Chapman & Hall/CRC Texts in Statistical Science) by G
US $38,32US $38,32
Sa, 16. Aug, 18:44Sa, 16. Aug, 18:44
Ähnlichen Artikel verkaufen?

Markov Chain Monte Carlo (Chapman & Hall/CRC Texts in Statistical Science) by G

textbooks_source
(37869)
Angemeldet als gewerblicher Verkäufer
US $38,32
Ca.CHF 30,68
Artikelzustand:
Gut
    Versand:
    Kostenlos USPS Media MailTM.
    Standort: Columbia, Missouri, USA
    Lieferung:
    Lieferung zwischen Do, 4. Sep und Di, 9. Sep nach 94104 bei heutigem Zahlungseingang
    Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
    Rücknahme:
    30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
    Zahlungen:
         Diners Club

    Sicher einkaufen

    eBay-Käuferschutz
    Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
    Der Verkäufer ist für dieses Angebot verantwortlich.
    eBay-Artikelnr.:335925229689
    Zuletzt aktualisiert am 13. Aug. 2025 14:53:15 MESZAlle Änderungen ansehenAlle Änderungen ansehen

    Artikelmerkmale

    Artikelzustand
    Gut: Buch, das gelesen wurde, sich aber in einem guten Zustand befindet. Der Einband weist nur sehr ...
    Book Title
    Markov Chain Monte Carlo (Chapman & Hall/CRC Texts in Statistical
    ISBN
    9781584885870

    Über dieses Produkt

    Product Identifiers

    Publisher
    CRC Press LLC
    ISBN-10
    1584885874
    ISBN-13
    9781584885870
    eBay Product ID (ePID)
    50935070

    Product Key Features

    Number of Pages
    342 Pages
    Publication Name
    Markov Chain Monte Carlo : Stochastic Simulation for Bayesian Inference, Second Edition
    Language
    English
    Subject
    Probability & Statistics / Stochastic Processes, Probability & Statistics / General
    Publication Year
    2006
    Type
    Textbook
    Author
    Hedibert F. Lopes, Dani Gamerman
    Subject Area
    Mathematics
    Series
    Chapman and Hall/Crc Texts in Statistical Science Ser.
    Format
    Hardcover

    Dimensions

    Item Height
    0.9 in
    Item Weight
    21.7 Oz
    Item Length
    9.5 in
    Item Width
    6.6 in

    Additional Product Features

    Edition Number
    2
    Intended Audience
    College Audience
    LCCN
    2006-044491
    Dewey Edition
    22
    Illustrated
    Yes
    Dewey Decimal
    519.542
    Edition Description
    Revised edition,New Edition
    Table Of Content
    Introduction Stochastic simulation Introduction Generation of Discrete Random Quantities Generation of Continuous Random Quantities Generation of Random Vectors and Matrices Resampling Methods Exercises Bayesian Inference Introduction Bayes' Theorem Conjugate Distributions Hierarchical Models Dynamic Models Spatial Models Model Comparison Exercises Approximate methods of inference Introduction Asymptotic Approximations Approximations by Gaussian Quadrature Monte Carlo Integration Methods Based on Stochastic Simulation Exercises Markov chains Introduction Definition and Transition Probabilities Decomposition of the State Space Stationary Distributions Limiting Theorems Reversible Chains Continuous State Spaces Simulation of a Markov Chain Data Augmentation or Substitution Sampling Exercises Gibbs Sampling Introduction Definition and Properties Implementation and Optimization Convergence Diagnostics Applications MCMC-Based Software for Bayesian Modeling Appendix 5.A: BUGS Code for Example 5.7 Appendix 5.B: BUGS Code for Example 5.8 Exercises Metropolis-Hastings algorithms Introduction Definition and Properties Special Cases Hybrid Algorithms Applications Exercises Further topics in MCMC Introduction Model Adequacy Model Choice: MCMC Over Model and Parameter Spaces Convergence Acceleration Exercises References Author Index Subject Index
    Synopsis
    While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: - More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms - Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection - Discussion of computation using both R and WinBUGS - Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web - Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses., While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses., Presenting a comprehensive introduction to the methods of this valuable simulation technique, this second edition includes new chapters on Gibbs sampling and Metropolis-Hastings algorithms. It incorporates all the recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, and more. With additional exercises and selected solutions within the text, it offers all data sets and software for download from the Web.
    LC Classification Number
    QA279.5.G36 2006

    Artikelbeschreibung des Verkäufers

    Info zu diesem Verkäufer

    textbooks_source

    99,2% positive Bewertungen252 Tsd. Artikel verkauft

    Mitglied seit Mai 2017
    Antwortet meist innerhalb 24 Stunden
    Angemeldet als gewerblicher Verkäufer
    Shop besuchenKontakt

    Detaillierte Verkäuferbewertungen

    Durchschnitt in den letzten 12 Monaten
    Genaue Beschreibung
    4.9
    Angemessene Versandkosten
    5.0
    Lieferzeit
    5.0
    Kommunikation
    5.0

    Verkäuferbewertungen (40'067)

    Alle Bewertungen
    Positiv
    Neutral
    Negativ
      • j***j (257)- Bewertung vom Käufer.
        Letzter Monat
        Bestätigter Kauf
        all good
      Alle Bewertungen ansehen