
DEEP LEARNING FÜR COMPUTERARCHITEKTEN (SYNTHESE-VORTRÄGE von Paul Whatmough
US $75,95US $75,95
Do, 03. Jul, 14:15Do, 03. Jul, 14:15
Bild 1 von 1

Galerie
Bild 1 von 1

Ähnlichen Artikel verkaufen?
DEEP LEARNING FÜR COMPUTERARCHIT EKTEN (SYNTHESE-VORT RÄGE von Paul Whatmough
~ Quick Free Delivery in 2-14 days. 100% Satisfaction ~
US $75,95
Ca.CHF 60,82
Artikelzustand:
“Book is in typical used-Good Condition. Will show signs of wear to cover and/or pages. There may be ”... Mehr erfahrenÜber den Artikelzustand
Gut
Buch, das gelesen wurde, sich aber in einem guten Zustand befindet. Der Einband weist nur sehr geringfügige Beschädigungen auf, wie z.B. kleinere Schrammen, er hat aber weder Löcher, noch ist er eingerissen. Bei gebundenen Büchern ist der Schutzumschlag möglicherweise nicht mehr vorhanden. Die Bindung weist geringfügige Gebrauchsspuren auf. Die Mehrzahl der Seiten ist unbeschädigt, das heißt, es gibt kaum Knitter oder Einrisse, es wurden nur in geringem Maße Bleistiftunterstreichungen im Text vorgenommen, es gibt keine Textmarkierungen und die Randbereiche sind nicht beschrieben. Alle Seiten sind vollständig vorhanden. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos Economy Shipping.
Standort: US, USA
Lieferung:
Lieferung zwischen Mo, 21. Jul und Do, 24. Jul bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Verkäufer zahlt Rückversand.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:336018753630
Artikelmerkmale
- Artikelzustand
- Gut
- Hinweise des Verkäufers
- ISBN-10
- 1627057285
- Book Title
- Deep Learning for Computer Architects (Synthesis Lectures on
- ISBN
- 9781627057288
Über dieses Produkt
Product Identifiers
Publisher
Morgan & Claypool Publishers
ISBN-10
1627057285
ISBN-13
9781627057288
eBay Product ID (ePID)
240299249
Product Key Features
Number of Pages
123 Pages
Language
English
Publication Name
Deep Learning for Computer Architects
Publication Year
2017
Subject
Systems Architecture / General, Intelligence (Ai) & Semantics, Neural Networks
Type
Textbook
Subject Area
Computers
Series
Synthesis Lectures on Computer Architecture Ser.
Format
Trade Paperback
Dimensions
Item Height
0.3 in
Item Weight
8 Oz
Item Length
9.2 in
Item Width
7.5 in
Additional Product Features
Intended Audience
Trade
Illustrated
Yes
Table Of Content
Preface Introduction Foundations of Deep Learning Methods and Models Neural Network Accelerator Optimization: A Case Study A Literature Survey and Review Conclusion Bibliography Authors' Biographies
Synopsis
This is a primer written for computer architects in the new and rapidly evolving field of deep learning. It reviews how machine learning has evolved since its inception in the 1960s and tracks the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. It also reviews representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, it also details the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, it presents a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context., A primer for computer architects in a new and rapidly evolving field. The authors review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that have emerged in the last decade., This is a primer written for computer architects in the new and rapidly evolving field of deep learning . It reviews how machine learning has evolved since its inception in the 1960s and tracks the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. It also reviews representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, it also details the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, it presents a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
ZUBER
97,8% positive Bewertungen•959 Tsd. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Beliebte Kategorien in diesem Shop
Verkäuferbewertungen (294'562)
Dieser Artikel (1)
Alle Artikel (294'562)
- e***l (796)- Bewertung vom Käufer.Letzter MonatBestätigter KaufLow cost, fast shipping, probably in good condition, A+ ebayer.
- l***1 (483)- Bewertung vom Käufer.Letzter MonatBestätigter KaufFast shipping, exact description. Thank you!
- a***c (1487)- Bewertung vom Käufer.Letzter MonatBestätigter KaufGreat seller!
- m***2 (222)- Bewertung vom Käufer.Letzter MonatBestätigter KaufExcellent book at a decent price. Very happy with this purchase.
Noch mehr entdecken:
- Paul Maar Hörspiele,
- Paul Maar Belletristik-Bücher,
- Paul Maar Hörbücher und Hörspiele,
- Paul Maar Belletristik Romane,
- Paul-Maar-Sachbuch Bücher,
- Paul Maar Hörbücher und Hörspiele auf Deutsch,
- Bücher mit Kinder- & Jugendliteratur Paul Maar,
- Computer & Internetliteratur auf Deutsch,
- Computer & Internetliteratur über Programmiersprache,
- Computer & Internetliteratur über Web & Internet