Bild 1 von 1
Galerie
Bild 1 von 1
Ähnlichen Artikel verkaufen?
TinyML: Machine Learning mit Tensorflow Lite auf Arduino und Ultra-Low-Powe r...
US $39,20
Ca.CHF 31,06
Artikelzustand:
Neuwertig
Buch, das wie neu aussieht, aber bereits gelesen wurde. Der Einband weist keine sichtbaren Gebrauchsspuren auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
2 verfügbar
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos USPS Media MailTM.
Standort: Jessup, Maryland, USA
Lieferung:
Lieferung zwischen Do, 31. Jul und Mi, 6. Aug nach 94104 bei heutigem Zahlungseingang
Rücknahme:
14 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:356813463052
Artikelmerkmale
- Artikelzustand
- Book Title
- TinyML : Machine Learning With Tensorflow Lite on Arduino and Ult
- ISBN
- 9781492052043
Über dieses Produkt
Product Identifiers
Publisher
O'reilly Media, Incorporated
ISBN-10
1492052043
ISBN-13
9781492052043
eBay Product ID (ePID)
4038667237
Product Key Features
Number of Pages
350 Pages
Publication Name
Tinyml : Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers
Language
English
Subject
Data Modeling & Design, General, Computer Vision & Pattern Recognition
Publication Year
2020
Type
Textbook
Subject Area
Computers, Science
Format
Trade Paperback
Dimensions
Item Height
1 in
Item Weight
29.6 Oz
Item Length
9.1 in
Item Width
7.1 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2020-277178
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Synopsis
Neural networks are getting smaller. Much smaller. The OK Google team, for example, has run machine learning models that are just 14 kilobytes in size--small enough to work on the digital signal processor in an Android phone. With this practical book, you'll learn about TensorFlow Lite for Microcontrollers, a miniscule machine learning library that allows you to run machine learning algorithms on tiny hardware. Authors Pete Warden and Daniel Situnayake explain how you can train models that are small enough to fit into any environment, including small embedded devices that can run for a year or more on a single coin cell battery. Ideal for software and hardware developers who want to build embedded devices using machine learning, this guide shows you how to create a TinyML project step-by-step. No machine learning or microcontroller experience is necessary. Learn practical machine learning applications on embedded devices, including simple uses such as speech recognition and gesture detection Train models such as speech, accelerometer, and image recognition, you can deploy on Arduino and other embedded platforms Understand how to work with Arduino and ultralow-power microcontrollers Use techniques for optimizing latency, energy usage, and model and binary size, Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size--small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. As of early 2022, the supplemental code files are available at https://oreil.ly/XuIQ4. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google's toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size, Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size--small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. As of early 2022, the supplemental code files are available at https: //oreil.ly/XuIQ4. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google's toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
LC Classification Number
Q325.5.W37 2020
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
Great Book Prices Store
96,8% positive Bewertungen•1.4 Mio. Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Verkäuferbewertungen (385'030)
- c***m (323)- Bewertung vom Käufer.Letzter MonatBestätigter KaufPerfect
- s***r (238)- Bewertung vom Käufer.Letzter MonatBestätigter KaufAA++ many thx
- t***d (1606)- Bewertung vom Käufer.Letzter MonatBestätigter KaufAs described…thanks!!!