|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

TinyML: Machine Learning mit Tensorflow Lite auf Arduino und Ultra-Low-Power...

Great Book Prices Store
(339615)
Angemeldet als gewerblicher Verkäufer
US $39,20
Ca.CHF 31,06
Artikelzustand:
Neuwertig
2 verfügbar
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos USPS Media MailTM.
Standort: Jessup, Maryland, USA
Lieferung:
Lieferung zwischen Do, 31. Jul und Mi, 6. Aug nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
14 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:356813463052
Zuletzt aktualisiert am 09. Jul. 2025 10:58:22 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neuwertig: Buch, das wie neu aussieht, aber bereits gelesen wurde. Der Einband weist keine ...
Book Title
TinyML : Machine Learning With Tensorflow Lite on Arduino and Ult
ISBN
9781492052043

Über dieses Produkt

Product Identifiers

Publisher
O'reilly Media, Incorporated
ISBN-10
1492052043
ISBN-13
9781492052043
eBay Product ID (ePID)
4038667237

Product Key Features

Number of Pages
350 Pages
Publication Name
Tinyml : Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers
Language
English
Subject
Data Modeling & Design, General, Computer Vision & Pattern Recognition
Publication Year
2020
Type
Textbook
Author
Daniel Situnayake, Pete Warden
Subject Area
Computers, Science
Format
Trade Paperback

Dimensions

Item Height
1 in
Item Weight
29.6 Oz
Item Length
9.1 in
Item Width
7.1 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2020-277178
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Synopsis
Neural networks are getting smaller. Much smaller. The OK Google team, for example, has run machine learning models that are just 14 kilobytes in size--small enough to work on the digital signal processor in an Android phone. With this practical book, you'll learn about TensorFlow Lite for Microcontrollers, a miniscule machine learning library that allows you to run machine learning algorithms on tiny hardware. Authors Pete Warden and Daniel Situnayake explain how you can train models that are small enough to fit into any environment, including small embedded devices that can run for a year or more on a single coin cell battery. Ideal for software and hardware developers who want to build embedded devices using machine learning, this guide shows you how to create a TinyML project step-by-step. No machine learning or microcontroller experience is necessary. Learn practical machine learning applications on embedded devices, including simple uses such as speech recognition and gesture detection Train models such as speech, accelerometer, and image recognition, you can deploy on Arduino and other embedded platforms Understand how to work with Arduino and ultralow-power microcontrollers Use techniques for optimizing latency, energy usage, and model and binary size, Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size--small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. As of early 2022, the supplemental code files are available at https://oreil.ly/XuIQ4. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google's toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size, Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size--small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. As of early 2022, the supplemental code files are available at https: //oreil.ly/XuIQ4. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google's toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
LC Classification Number
Q325.5.W37 2020

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

Great Book Prices Store

96,8% positive Bewertungen1.4 Mio. Artikel verkauft

Mitglied seit Feb 2017
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
4.9

Verkäuferbewertungen (385'030)

Alle Bewertungen
Positiv
Neutral
Negativ