|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

Machine Learning im Finanzwesen von der Theorie in die Praxis

Late Knight Books
(91)
Angemeldet als gewerblicher Verkäufer
US $119,99
Ca.CHF 96,47
Artikelzustand:
Neu
10 verfügbar
Versand:
US $5,00 (ca. CHF 4,02) USPS Priority Mail®.
Standort: Lansdale, PA, USA
Lieferung:
Lieferung zwischen Mo, 11. Aug und Sa, 16. Aug nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
Keine Rücknahme.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:357181741480
Zuletzt aktualisiert am 16. Jul. 2025 16:29:30 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
Type
Textbook
ISBN
9783030410674

Über dieses Produkt

Product Identifiers

Publisher
Springer International Publishing A&G
ISBN-10
3030410676
ISBN-13
9783030410674
eBay Product ID (ePID)
22038622225

Product Key Features

Book Title
Machine Learning in Finance : from Theory to Practice
Number of Pages
Xxv, 548 Pages
Language
English
Publication Year
2020
Topic
Probability & Statistics / General, Applied, Statistics
Illustrator
Yes
Genre
Mathematics, Business & Economics
Author
Matthew F. Dixon, Paul Bilokon, Igor Halperin
Format
Hardcover

Dimensions

Item Weight
36 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Reviews
"This volume aims to present a broad yet technical treatment of (ML) algorithms used by financial practitioners and scholars alike. ... the book fills a large void. ... This encourages reproducibility as well as learning by doing, which is highly appreciated." (Guillaume Coqueret, Quantitative Finance, October 15, 2020), "Each part is introduced with background information, examples of relevant practical applications, and references to the most recent scientific literature. ... The book covers all essential areas of machine learning with relevance to quantitative finance. ... An additional strong advantage of this book is the clear and consistent structure of its chapters. ... Overall, the book covers multiple machine learning approaches with advanced technical exposition and is therefore especially suitable as an academic reference point, especially on Reinforcement Learning." (Antoniya Shivarova, Financial Markets and Portfolio Management, Issue 35, 2021) "This volume aims to present a broad yet technical treatment of (ML) algorithms used by financial practitioners and scholars alike. ... the book fills a large void. ... This encourages reproducibility as well as learning by doing, which is highly appreciated." (Guillaume Coqueret, Quantitative Finance, October 15, 2020), "This book is, however, a well-structured and self-contained graduate textbook on ML applications in finance. Exercises and some applications are included at the end of each chapter and the Python code used in this book makes use of the Python Tensor Flow library. This book could also serve as a useful reference book for researchers and practitioners in quantitative finance." (Gilles Teyssière, Mathematical Reviews, February, 2023) "Each part is introduced with background information, examples of relevant practical applications, and references to the most recent scientific literature. ... The book covers all essential areas of machine learning with relevance to quantitative finance. ... An additional strong advantage of this book is the clear and consistent structure of its chapters. ... Overall, the book covers multiple machine learning approaches with advanced technical exposition and is therefore especially suitable as an academic reference point, especially on Reinforcement Learning." (Antoniya Shivarova, Financial Markets and Portfolio Management, Issue 35, 2021) "This volume aims to present a broad yet technical treatment of (ML) algorithms used by financial practitioners and scholars alike. ... the book fills a large void. ... This encourages reproducibility as well as learning by doing, which is highly appreciated." (Guillaume Coqueret, Quantitative Finance, October 15, 2020)
Number of Volumes
1 vol.
Table Of Content
Chapter 1. Introduction.- Chapter 2. Probabilistic Modeling.- Chapter 3. Bayesian Regression & Gaussian Processes.- Chapter 4. Feed Forward Neural Networks.- Chapter 5. Interpretability.- Chapter 6. Sequence Modeling.- Chapter 7. Probabilistic Sequence Modeling.- Chapter 8. Advanced Neural Networks.- Chapter 9. Introduction to Reinforcement learning.- Chapter 10. Applications of Reinforcement Learning.- Chapter 11. Inverse Reinforcement Learning and Imitation Learning.- Chapter 12. Frontiers of Machine Learning and Finance.
Synopsis
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesianand frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likelyto emerge as important methodologies for machine learning in finance., Chapter 1. Introduction.- Chapter 2. Probabilistic Modeling.- Chapter 3. Bayesian Regression & Gaussian Processes.- Chapter 4. Feed Forward Neural Networks.- Chapter 5. Interpretability.- Chapter 6. Sequence Modeling.- Chapter 7. Probabilistic Sequence Modeling.- Chapter 8. Advanced Neural Networks.- Chapter 9. Introduction to Reinforcement learning.- Chapter 10. Applications of Reinforcement Learning.- Chapter 11. Inverse Reinforcement Learning and Imitation Learning.- Chapter 12. Frontiers of Machine Learning and Finance.
LC Classification Number
QA276-280

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

Late Knight Books

100% positive Bewertungen74 Artikel verkauft

Mitglied seit Jun 2018
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Looking for hard to find books?Have a niche interest that no one seems to know about?Message me or visit LateKnightBooks.com Dare me to find what you need.Obscure music books: FoundOld technical ...
Mehr anzeigen
Shop besuchenKontakt

Verkäuferbewertungen (30)

Alle Bewertungen
Positiv
Neutral
Negativ