Fuzzy Semigroups von John N. Mordeson (Englisch) Taschenbuch

grandeagleretail
(956065)
Angemeldet als gewerblicher Verkäufer
US $265,90
Ca.CHF 211,60
Artikelzustand:
Neu
3 verfügbar
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos Economy Shipping.
Standort: Fairfield, Ohio, USA
Lieferung:
Lieferung zwischen Fr, 7. Nov und Di, 25. Nov nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:365904428963

Artikelmerkmale

Artikelzustand
Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
ISBN-13
9783642057069
Book Title
Fuzzy Semigroups
ISBN
9783642057069
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Springer Berlin / Heidelberg
ISBN-10
3642057063
ISBN-13
9783642057069
eBay Product ID (ePID)
109235611

Product Key Features

Number of Pages
IX, 319 Pages
Publication Name
Fuzzy Semigroups
Language
English
Subject
Algebra / Abstract, Engineering (General), Algebra / General, Logic, Applied
Publication Year
2010
Type
Textbook
Author
John N. Mordeson, Nobuaki Kuroki, Davender S. Malik
Subject Area
Mathematics, Technology & Engineering
Series
Studies in Fuzziness and Soft Computing Ser.
Format
Trade Paperback

Dimensions

Item Weight
18 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Intended Audience
Scholarly & Professional
Dewey Edition
21
Series Volume Number
131
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
512/.2
Table Of Content
1 Introduction.- 1.1 Notation.- 1.2 Relations.- 1.3 Functions.- 1.4 Fuzzy Subsets.- 1.5 Semigroups.- 1.6 Codes.- 1.7 Finite-State Machines.- 1.8 Finite-State Automata.- 1.9 Languages and Grammars.- 1.10 Nondeterministic Finite-State Automata.- 1.11 Relationships Between Languages and Automata.- 2 Fuzzy Ideals.- 2.1 Introduction.- 2.2 Ideals in Semigroups.- 2.3 Fuzzy Ideals in Semigroups.- 2.4 Fuzzy Bi-ideals in Semigroups.- 2.5 Fuzzy Interior Ideals in Semigroups.- 2.6 Fuzzy Quasi-ideals in Semigroups.- 2.7 Fuzzy Generalized Bi-ideals in Semigroups.- 2.8 Fuzzy Ideals Generated by Fuzzy Subsets of Semigroups.- 3 Regular Semigroups.- 3.1 Regular Semigroups.- 3.2 Completely Regular Semigroups.- 3.3 Intra-regular Semigroups.- 3.4 Semisimple Semigroups.- 3.5 On Fuzzy Regular Subsemigroups of a Semigroup.- 3.6 Fuzzy Weakly Regular Subsemigroups.- 3.7 Fuzzy Completely Regular and Weakly Completely Regular Subsemigroups.- 3.8 Weakly Regular Semigroups.- 4 Semilattices of Groups.- 4.1 A Semilattice of Left (Right) Simple Semigroups.- 4.2 A Semilattice of Left (Right) Groups.- 4.3 A Semilattices of Groups.- 4.4 Fuzzy Normal Semigroups.- 4.5 Convexity and Green's Relations.- 4.6 The Compact Convex Set of Fuzzy Ideals.- 4.7 Fuzzy Ideals and Green's Relations.- 5 Fuzzy Congruences on Semigroups.- 5.1 Fuzzy Congruences on a Semigroup.- 5.2 Fuzzy Congruences on a Group.- 5.3 Fuzzy Factor Semigroups.- 5.4 Homomorphism Theorems.- 5.5 Idempotent-separating Fuzzy Congruences.- 5.6 Group Fuzzy Congruences.- 5.7 The Lattice of Fuzzy Congruence Relations on a Semigroup.- 5.8 Fuzzy Congruence Pairs of Inverse Semigroups.- 5.9 Fuzzy Rees Congruences on Semigroups.- 5.10 Additional Fuzzy Congruences on Semigroups.- 6 Fuzzy Congruences on T*-pure Semigroups.- 6.1 T*-pure Semigroups.- 6.2Semilattice Fuzzy Congruences.- 6.3 Group Fuzzy Congruences.- 7 Prime Fuzzy Ideals.- 7.1 Preliminaries.- 7.2 Prime Fuzzy Ideals.- 7.3 Weakly Prime Fuzzy Ideals.- 7.4 Completely Prime and Weakly Completely Prime Fuzzy Ideals.- 7.5 Relationships.- 7.6 Types of Prime Fuzzy Left Ideals.- 7.7 Prime Fuzzy Left Ideals.- 7.8 Fuzzy m-systems and Quasi-prime Fuzzy Left Ideals.- 7.9 Weakly Quasi-prime Fuzzy Left Ideals.- 7.10 Fuzzy Ideals i(f) and I(f).- 7.11 Strongly Semisimple Semigroups.- 7.12 Fuzzy Multiplication Semigroups.- 7.13 Properties of Fuzzy Multiplication Semigroups.- 7.14 Fuzzy Ideal Extensions.- 7.15 Prime Fuzzy Ideals.- 8 Fuzzy Codes on Free Monoids.- 8.1 Fuzzy Codes.- 8.2 Prefix Codes.- 8.3 Maximal Fuzzy Prefix Codes.- 8.4 Algebraic Properties of Fuzzy Prefix Codes on a Free Monoid.- 8.5 Fuzzy Prefix Codes Related to Fuzzy Factor Theorems.- 8.6 Equivalent Depictions of Fuzzy Codes.- 8.7 Fuzzy Codes and Fuzzy Submonoids.- 8.8 An Algorithm of test for Fuzzy Codes.- 8.9 Measure of a Fuzzy Code.- 8.10 Code Theory and Fuzzy Subsemigroups.- 8.11 Construction of Examples by Closure Systems.- 8.12 Examples by *-morphisms.- 9 Generalized State Machines.- 9.1 T-generalized State Machines.- 9.2 T-generalized Transformation Semigroups.- 9.3 Coverings.- 9.4 Direct Products.- 9.5 Decompositions of T-generalized Transformation Semigroups.- 9.6 On Proper Fuzzification of Finite State Machines.- 9.7 Generalized Fuzzy Finite State Machines.- 9.8 Fuzzy Relations and Fuzzy Finite State Machines.- 9.9 Completion of Fuzzy Finite State Machines.- 9.10 Generalized State Machines and Homomorphisms.- 10 Regular Fuzzy Expressions.- 10.1 Regular Fuzzy Expressions.- 10.2 Codes Over Languages.- 10.3 Regulated Codes and Fuzzy Grammars.- References.
Synopsis
Lotfi Zadeh introduced the notion of a fuzzy subset of a set in 1965. Ris seminal paper has opened up new insights and applications in a wide range of scientific fields. Azriel Rosenfeld used the notion of a fuzzy subset to put forth cornerstone papers in several areas of mathematics, among other discplines. Rosenfeld is the father of fuzzy abstract algebra. Kuroki is re­ sponsible for much of fuzzy ideal theory of semigroups. Others who worked on fuzzy semigroup theory, such as Xie, are mentioned in the bibliogra­ phy. The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. We concentrate mainly on theoretical aspects, but we do include applications. The applications are in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. An extensive account of fuzzy automata and fuzzy languages is given in [100]. Consequently, we only consider results in these areas that have not appeared in [100] and that pertain to semigroups. In Chapter 1, we review some basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages. The purpose of this chapter is to present basic results that are needed in the remainder of the book. In Chapter 2, we introduce certain fuzzy ideals of a semigroup, namely, fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy interior ideals, fuzzy quasi­ ideals, and fuzzy generalized bi-ideals., Lotfi Zadeh introduced the notion of a fuzzy subset of a set in 1965. Ris seminal paper has opened up new insights and applications in a wide range of scientific fields. Azriel Rosenfeld used the notion of a fuzzy subset to put forth cornerstone papers in several areas of mathematics, among other discplines. Rosenfeld is the father of fuzzy abstract algebra. Kuroki is re- sponsible for much of fuzzy ideal theory of semigroups. Others who worked on fuzzy semigroup theory, such as Xie, are mentioned in the bibliogra- phy. The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. We concentrate mainly on theoretical aspects, but we do include applications. The applications are in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. An extensive account of fuzzy automata and fuzzy languages is given in 100]. Consequently, we only consider results in these areas that have not appeared in 100] and that pertain to semigroups. In Chapter 1, we review some basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages. The purpose of this chapter is to present basic results that are needed in the remainder of the book. In Chapter 2, we introduce certain fuzzy ideals of a semigroup, namely, fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy interior ideals, fuzzy quasi- ideals, and fuzzy generalized bi-ideals.
LC Classification Number
QA174-183

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

grandeagleretail

98,6% positive Bewertungen2.8 Mio. Artikel verkauft

Mitglied seit Sep 2010
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Grand Eagle Retail is your online bookstore. We offer Great books, Great prices and Great service.
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
4.9

Verkäuferbewertungen (1'065'544)

Alle Bewertungen
Positiv
Neutral
Negativ