|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

Data Science in Layman's Terms: Machine Learning [Hardcover] Lincoln, Nicholas

USA_Liquidation Central
(1288)
Angemeldet als gewerblicher Verkäufer
US $17,82
Ca.CHF 14,17
Artikelzustand:
Neu
Mehr als 10 verfügbar
Versand:
US $13,04 (ca. CHF 10,37) USPS Ground Advantage®.
Standort: Gainesville, Florida, USA
Lieferung:
Lieferung zwischen Do, 31. Jul und Mo, 4. Aug nach 91768 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
Keine Rücknahme.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:394724850393
Zuletzt aktualisiert am 13. Jun. 2025 14:57:00 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
Brand
Nicholas Lincoln
Style
ABIS_BOOK
ISBN
9780578575896

Über dieses Produkt

Product Identifiers

Publisher
Lincoln, Nicholas
ISBN-10
0578575892
ISBN-13
9780578575896
eBay Product ID (ePID)
21038523291

Product Key Features

Number of Pages
552 Pages
Language
English
Publication Name
Data Science in Layman's Terms : Machine Learning
Publication Year
2019
Subject
Probability & Statistics / General, Data Processing, Statistics
Type
Textbook
Subject Area
Mathematics, Computers, Business & Economics
Author
Nicholas Lincoln
Format
Hardcover

Dimensions

Item Height
1.2 in
Item Weight
54.9 Oz
Item Length
11 in
Item Width
8.5 in

Additional Product Features

Intended Audience
Trade
Illustrated
Yes
Synopsis
Machine learning has been one of the fastest growing fields over the last decade. Machines that can learn are becoming a part of our everyday lives. Machines that display intelligence and the ability to learn are powered by mathematics and algorithms. These topics do not have to be difficult. This book teaches a basic understanding of everything related to machine learning, so that beginner or intermediate level data scientists can expand their skills sets, and so that curious intellectuals can gain an understanding of the field. This book provides a complete overview of machine learning. It builds on the information presented by its predecessor, Data Science in Layman's Terms: Statistics. The book strikes a balance between an easy-reading tutorial and a theory intensive textbook, by first presenting the ideas, conceptually, at a high level, and then diving into the details and mathematics. Every chapter is accompanied by practical examples with Python, and R where applicable. The material in the first half of the book is arranged linearly, where each chapter builds on the knowledge of the previous chapters. The second half of the book explores subfields of machine learning, like natural language processing, computer vision, reinforcement learning, and network science. Some of the practical applications you will learn from this book are how to: - Construct a simulated agent that plays games without any instructions, and watch it learn to play on its own. - Apply facial recognition to photos and videos in real time. - Perform market basket analysis and clustering to improve marketing effectiveness or improve a customer's shopping experience. - Identify similar music, using sound alone. - Generate realistic looking anime character faces. - Identify abstract topics in text documents, and analyze how sentiment about different topics changes over time. - Predict pairs of people who might soon connect in a social network, and explore how networks change over time. - Convert scans or images of documents to text. - Learn how to build neural networks with Keras, and how to probe them with TensorBoard to identify how they could be improved. The GitHub repository accompanying this book can be found at: https: //github.com/nlinc1905/dsilt-ml-code, Machine learning has been one of the fastest growing fields over the last decade. This book provides a complete overview of machine learning, so that beginner or intermediate level data scientists can expand their skills sets, and so that curious intellectuals can gain an understanding of the field.

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

USA_Liquidation Central

99,5% positive Bewertungen4.5 Tsd. Artikel verkauft

Mitglied seit Jan 2019
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
We have been wholesalers/liquidators for almost 10 years now. Trying our luck on online retail platforms like ebay and offering wholesale prices and best deals. We provide excellent customer service ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
4.7
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (1'218)

Alle Bewertungen
Positiv
Neutral
Negativ