Understanding Machine Learning by Shai Shalev-Shwartz: Used

AlibrisBooks
(496393)
Gewerblich
Angemeldet als gewerblicher Verkäufer
US $45,33
Ca.CHF 36,51
Artikelzustand:
Gut
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos Standard Shipping.
Standort: Sparks, Nevada, USA
Lieferung:
Lieferung zwischen Mo, 24. Nov und Sa, 29. Nov nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:403944431116
Zuletzt aktualisiert am 20. Nov. 2025 00:19:49 MEZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Gut: Buch, das gelesen wurde, sich aber in einem guten Zustand befindet. Der Einband weist nur sehr ...
Book Title
Understanding Machine Learning
Publication Date
2014-05-19
Pages
410
ISBN
9781107057135
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Cambridge University Press
ISBN-10
1107057132
ISBN-13
9781107057135
eBay Product ID (ePID)
171820749

Product Key Features

Number of Pages
410 Pages
Publication Name
Understanding Machine Learning : from Theory to Algorithms
Language
English
Publication Year
2014
Subject
Algebra / General, Computer Vision & Pattern Recognition
Type
Textbook
Subject Area
Mathematics, Computers
Author
Shai Ben-David, Shai Shalev-Shwartz
Format
Hardcover

Dimensions

Item Height
1.1 in
Item Weight
32.2 Oz
Item Length
10.2 in
Item Width
7.2 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2014-001779
Reviews
Advance praise: 'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Schölkopf, Max Planck Institute for Intelligent Systems, "This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data." Bernhard Schlkopf, Max Planck Institute for Intelligent Systems
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Table Of Content
1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity trade-off; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
Synopsis
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering., Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering., Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the 'hows' and 'whys' of machine-learning algorithms, making the field accessible to both students and practitioners.
LC Classification Number
Q325.5 .S475 2014

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

AlibrisBooks

99,1% positive Bewertungen2.0 Mio. Artikel verkauft

Mitglied seit Mai 2008
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (551'346)

Alle Bewertungenselected
Positiv
Neutral
Negativ
  • r***g (242)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    Book was "nearly new" and "as described" in listing. The advertised price was fair and a good value. Unfortunately, the seller's shipping partner was very slow to get the book packaged and shipped. Shipping took too long, and the tracking info gave no reliable info on shipping date, time in transit or expected delivery. Seller did everything right, but their shipping partner needs improvement. I recommend this seller to other eBay buyers....... just make sure you're okay with the shipping terms.
  • e***u (283)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    The listing was for a hardcover version of this book; however, I received a paperback. The Seller replied quickly to my question about this issue and issued a full refund - and let me keep the book. So, a diligent Seller for sure - and well packaged and reasonable timing on shipping. Thank you for the refund, and as you suggested, I'll likely donate this volume and seek the hardcover.
  • e***n (392)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Great transaction, exactly as described, packed well, and promptly shipped on August 6th. Unfortunately the U.S. Postal Service took 23 calendar days to deliver the book. It was shipped from Pennsylvania, to Atlanta, past Alabama to Texas, enjoyed several days in Texas, then to Minneapolis, Jacksonville, Florida, back to Atlanta, finally to Birmingham, and Huntsville. The seller was very responsive and I decided it was interesting to see if/how the book would arrive. Thanks, Joe