|Eingestellt in Kategorie:
Ähnlichen Artikel verkaufen?

Entwerfen von maschinellen Lernsystemen: Ein iterativer Prozess für...

MaTheresa
(83)
Angemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
US $25,00
Ca.CHF 20,46
oder Preisvorschlag
Artikelzustand:
Akzeptabel
Ganz entspannt. Rückgaben akzeptiert.
Versand:
US $9,55 (ca. CHF 7,82) USPS Priority Mail Padded Flat Rate Envelope®.
Standort: Honolulu, Hawaii, USA
Lieferung:
Lieferung zwischen Di, 10. Jun und Mo, 16. Jun nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
     Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:405847383325

Artikelmerkmale

Artikelzustand
Akzeptabel: Buch mit deutlichen Gebrauchsspuren. Der Einband kann einige Beschädigungen aufweisen, ...
ISBN
9781098107963

Über dieses Produkt

Product Identifiers

Publisher
O'reilly Media, Incorporated
ISBN-10
1098107969
ISBN-13
9781098107963
eBay Product ID (ePID)
27057246296

Product Key Features

Number of Pages
386 Pages
Language
English
Publication Name
Designing Machine Learning Systems : an Iterative Process for Production-Ready Applications
Subject
Machine Theory, Enterprise Applications / Business Intelligence Tools, Intelligence (Ai) & Semantics
Publication Year
2022
Type
Textbook
Subject Area
Computers
Author
Chip Huyen
Format
Trade Paperback

Dimensions

Item Height
0.8 in
Item Weight
23.6 Oz
Item Length
9.2 in
Item Width
7.1 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2023-275143
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Synopsis
Many tutorials show you how to develop ML systems from ideation to deployed models. But with constant changes in tooling, those systems can quickly become outdated. Without an intentional design to hold the components together, these systems will become a technical liability, prone to errors and be quick to fall apart. In this book, Chip Huyen provides a framework for designing real-world ML systems that are quick to deploy, reliable, scalable, and iterative. These systems have the capacity to learn from new data, improve on past mistakes, and adapt to changing requirements and environments. Youà Ã?Â[ ll learn everything from project scoping, data management, model development, deployment, and infrastructure to team structure and business analysis. Learn the challenges and requirements of an ML system in production Build training data with different sampling and labeling methods Leverage best techniques to engineer features for your ML models to avoid data leakage Select, develop, debug, and evaluate ML models that are best suit for your tasks Deploy different types of ML systems for different hardware Explore major infrastructural choices and hardware designs Understand the human side of ML, including integrating ML into business, user experience, and team structure, Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements. Author Chip Huyen, co-founder of Claypot AI, considers each design decision--such as how to process and create training data, which features to use, how often to retrain models, and what to monitor--in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references. This book will help you tackle scenarios such as: Engineering data and choosing the right metrics to solve a business problem Automating the process for continually developing, evaluating, deploying, and updating models Developing a monitoring system to quickly detect and address issues your models might encounter in production Architecting an ML platform that serves across use cases Developing responsible ML systems
LC Classification Number
Q325.5

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

MaTheresa

100% positive Bewertungen285 Artikel verkauft

Mitglied seit Jan 2023
Antwortet meist innerhalb 24 Stunden
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
5.0
Angemessene Versandkosten
4.9
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (76)

Alle Bewertungen
Positiv
Neutral
Negativ